CFP last date
21 July 2025
Call for Paper
August Edition
IJCA solicits high quality original research papers for the upcoming August edition of the journal. The last date of research paper submission is 21 July 2025

Submit your paper
Know more
Reseach Article

Privacy-Preserving Data Integration for Recidivism Assessment

by Lisa Trigiante, Domenico Beneventano, Sonia Bergamaschi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 13
Year of Publication: 2025
Authors: Lisa Trigiante, Domenico Beneventano, Sonia Bergamaschi
10.5120/ijca2025925080

Lisa Trigiante, Domenico Beneventano, Sonia Bergamaschi . Privacy-Preserving Data Integration for Recidivism Assessment. International Journal of Computer Applications. 187, 13 ( Jun 2025), 1-8. DOI=10.5120/ijca2025925080

@article{ 10.5120/ijca2025925080,
author = { Lisa Trigiante, Domenico Beneventano, Sonia Bergamaschi },
title = { Privacy-Preserving Data Integration for Recidivism Assessment },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2025 },
volume = { 187 },
number = { 13 },
month = { Jun },
year = { 2025 },
issn = { 0975-8887 },
pages = { 1-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number13/privacy-preserving-data-integration-for-recidivism-assessment/ },
doi = { 10.5120/ijca2025925080 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-06-21T01:57:02.418353+05:30
%A Lisa Trigiante
%A Domenico Beneventano
%A Sonia Bergamaschi
%T Privacy-Preserving Data Integration for Recidivism Assessment
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 13
%P 1-8
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The emergence of Digital Justice in conjunction with advanced Data Analysis techniques presents the opportunity to advance the criminal justice system toward an innovative Data-Driven approach. An important issue of public safety is the analysis of legal recidivism. Assessing recidivism is a complex measurement problem that necessitates reconstructing a subject’s criminal history from criminal records, which usually reside in different autonomous databases. In addition, the collection and processing of sensitive legal-related data about individuals imposes consideration of privacy legislation and confidentiality implications. This paper presents the design and development of a Proof of Concept (PoC) for a Privacy-Preserving Data Integration (PPDI) framework to establish a Data Warehouse across criminal and court sources within the Italian Justice Domain and a Data Mart to assess the recidivism phenomena.

References
  1. Eupid - european patient identity management. https:// eupid.eu. Accessed: Aug. 01, 2024.
  2. Luca Bolognini and Camilla Bistolfi. Pseudonymization and impacts of big (personal/anonymous) data processing in the transition from the directive 95/46/ec to the new EU general data protection regulation. Comput. Law Secur. Rev., 33(2):171–181, 2017.
  3. Peter Christen, Thilina Ranbaduge, and Rainer Schnell. Linking Sensitive Data - Methods and Techniques for Practical Privacy-Preserving Information Sharing. Springer, 2020.
  4. Chris Clifton, Murat Kantarcioglu, AnHai Doan, Gunther Schadow, Jaideep Vaidya, Ahmed K. Elmagarmid, and Dan Suciu. Privacy-preserving data integration and sharing. In DMKD, pages 19–26. ACM, 2004.
  5. Elizabeth Ashley Durham, Murat Kantarcioglu, Yuan Xue, Csaba T´oth, Mehmet Kuzu, and Bradley A. Malin. Composite bloom filters for secure record linkage. IEEE Trans. Knowl. Data Eng., 26(12):2956–2968, 2014.
  6. Benjamin C. M. Fung et al. Privacy-preserving data publishing: A survey of recent developments. ACM Comput. Surv., 42(4):14:1–14:53, 2010.
  7. J M Gouweleeuw, Peter Kooiman, and PP De Wolf. Post randomisation for statistical disclosure control: Theory and implementation. Journal of official Statistics, 14(4):463, 1998.
  8. Yehuda Lindell and Benny Pinkas. Secure multiparty computation for privacy-preserving data mining. J. Priv. Confidentiality, 1(1), 2009.
  9. Riccardo Pozzi, Riccardo Rubini, Christian Bernasconi, and Matteo Palmonari. Named entity recognition and linking for entity extraction from italian civil judgements. In Proceedings of AIxIA 2023. Springer, 2023.
  10. R. Schnell. Privacy-preserving record linkage. In K. Harron, H. Goldstein, and C. Dibben, editors, Methodological Developments in Data Linkage, pages 201–225. John Wiley & Sons, UK, December 2015.
  11. Rainer Schnell, Tobias Bachteler, and J¨org Reiher. Privacypreserving record linkage using bloom filters. BMC Medical Informatics Decis. Mak., 9:41, 2009.
  12. Rainer Schnell, Tobias Bachteler, and J¨org Reiher. A novel error-tolerant anonymous linking code, 2011.
  13. Duncan Smith. Secure pseudonymisation for privacypreserving probabilistic record linkage. J. Inf. Secur. Appl., 34:271–279, 2017.
  14. Khoi-Nguyen Tran, Dinusha Vatsalan, and Peter Christen. Geco: an online personal data generator and corruptor. In Proc. of CIKM 2013, pages 2473–2476. ACM, 2013.
  15. Lisa Trigiante, Domenico Beneventano, and Sonia Bergamaschi. Privacy-preserving data integration for digital justice. Technical Report TR-2025-01, Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 2025. https://dbgroup.ing.unimore.it/ TecRep/trigiante2025_1.pdf.
  16. Dinusha Vatsalan, Peter Christen, and Vassilios S. Verykios. A taxonomy of privacy-preserving record linkage techniques. Inf. Syst., 38(6):946–969, 2013.
  17. Anushka Vidanage, Thilina Ranbaduge, Peter Christen, and Rainer Schnell. Taxonomy of attacks on privacy-preserving record linkage. J. Priv. Confidentiality, 12(1), 2022.
Index Terms

Computer Science
Information Sciences

Keywords

Data Integration GDPR Privacy Pseudonym Justice Domain