CFP last date
20 February 2025
Reseach Article

Face Expressions Recognition by using Deep Learning

by Salwa Almoshity, Salema Younus, Sarah Amer Al-asbaily
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 8
Year of Publication: 2024
Authors: Salwa Almoshity, Salema Younus, Sarah Amer Al-asbaily
10.5120/ijca2024923432

Salwa Almoshity, Salema Younus, Sarah Amer Al-asbaily . Face Expressions Recognition by using Deep Learning. International Journal of Computer Applications. 186, 8 ( Feb 2024), 40-44. DOI=10.5120/ijca2024923432

@article{ 10.5120/ijca2024923432,
author = { Salwa Almoshity, Salema Younus, Sarah Amer Al-asbaily },
title = { Face Expressions Recognition by using Deep Learning },
journal = { International Journal of Computer Applications },
issue_date = { Feb 2024 },
volume = { 186 },
number = { 8 },
month = { Feb },
year = { 2024 },
issn = { 0975-8887 },
pages = { 40-44 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number8/face-expressions-recognition-by-using-deep-learning/ },
doi = { 10.5120/ijca2024923432 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-29T03:28:31.590897+05:30
%A Salwa Almoshity
%A Salema Younus
%A Sarah Amer Al-asbaily
%T Face Expressions Recognition by using Deep Learning
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 8
%P 40-44
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Facial expression recognition is a technology that uses biometric features to classify expressions in human faces. This technology plays a significant role in social communication since it conveys a lot of information about people, is considered a sentiment analysis tool, and is able to automatically recognize the seven basic or universal expressions: anger, contempt, disgust, fear, happiness, sadness, and surprise. Deep learning methods boost the learning process and facilitate the data creation task. In this work, the proposed approach used a non-classical technique, Inception-Resnet-v2, to pre-trained deep neural networks (DNNs) on more than a million images from the ImageNet and tested utilizing the face expression database from the Cohn-Kanade (CK+). The system had a loss validation of 0.014668% and attained 100% accuracy.

References
  1. Mehraj, H., & Mir, A. H. (2021). A Survey of Biometric Recognition Using Deep Learning. EAI Endorsed Transactions on Energy Web, 8(33), e6-e6.‏
  2. Mustapha, M. F., Mohamad, N. M., & AB, S. H. (2022). A Survey On Video Face Recognition Using Deep Learning. Journal of Quality Measurement and Analysis JQMA, 18(1), 49-62.‏
  3. Minaee, S., Abdolrashidi, A., Su, H., Bennamoun, M., & Zhang, D. (2023). Biometrics recognition using deep learning: A survey. Artificial Intelligence Review, 1-49.‏
  4. Bogdanov, M. R., Dumchikova, I. N., Dokuchaev, I. S., & Dumchikov, А. (2018). Deep learning based person biometric identification. Industry 4.0, 3(4), 219-222.‏
  5. Younus, S., Abdulali, E. O., Bozed, K. A., & Boudjellal, S. E. (2022, May). PalmPrint Recognition using Deep Convolutional Neural Networks. In 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA) (pp. 539-543). IEEE.‏.
  6. Shepley, A. J. (2019). Deep learning for face recognition: a critical analysis. arXiv preprint arXiv:1907.12739.‏
  7. Sarvakar, K., Senkamalavalli, R., Raghavendra, S., Kumar, J. S., Manjunath, R., & Jaiswal, S. (2023). Facial emotion recognition using convolutional neural networks. Materials Today: Proceedings, 80, 3560-3564.‏
  8. Choi I., Ahn H., & Yoo J.,( 2018) “Facial Expression Classification Using Deep Convolutional Neural Network”, Journal of Electrical Engineering and Technology,vol.13,no.1,pp.1,pp. 485-492.,
  9. Mehendale N.,(2020)”Facial,emotion recognition using convolutional neural networks”, SN Applied Sciences,vol.2,no.3,pp.1-8.
  10. Wibowo, H., Firdausi, F., Suharso, W., Kusuma, W. A., & Harmanto, D. (2019). Facial expression recognition of 3D image using facial action coding system (FACS). Telkomnika, 17(2), 628-636.‏
  11. Akhand, M. A. H., Roy, S., Siddique, N., Kamal, M. A. S., & Shimamura, T. (2021). Facial emotion recognition using transfer learning in the deep CNN. Electronics, 10(9), 1036.‏
  12. Suneeta, V. B., Purushottam, P., Prashantkumar, K., Sachin, S., & Supreet, M. (2019, September). Facial expression recognition using supervised learning. In International Conference On Computational Vision and Bio Inspired Computing (pp. 275-285). Cham: Springer International Publishing.‏
  13. Singh, A., Srivastav, A. P., Choudhary, P., & Raj, S. (2021, April). Facial emotion recognition using convolutional neural network. In 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM) (pp. 486-490). IEEE.‏
  14. Santra,A., Rai, V. , Das , D. Kundu, S.(2022) “Facial Expression Recognition Using Convolutional Neural Network “vol.10,pp. 2321-9653,2022.
  15. Mehendale, N. (2020). Facial emotion recognition using convolutional neural networks (FERC). SN Applied Sciences, 2(3), 446.‏
  16. Altaher, A., Salekshahrezaee, Z., Abdollah Zadeh, A., Rafieipour, H., & Altaher, A. (2020). Using multi-inception CNN for face emotion recognition. Journal of Bioengineering Research, 3(1), 1-12.‏
  17. Sarvakar, K., Senkamalavalli, R., Raghavendra, S., Kumar, J. S., Manjunath, R., & Jaiswal, S. (2023). Facial emotion recognition using convolutional neural networks. Materials Today: Proceedings, 80, 3560-3564.‏
  18. Tripathi , A., Thakurdesai, N.,(2018)”Implementation and Comparison of Facial Expression Detection and Classification Techniques” International Journal of Computer Applications,vol.182 ,no. 18,pp. 0975 – 8887.
  19. Wable , S., Shitole , S., Thorat , A., Sarde , R.& Zope, M. ,( 2022) “Classification and Identification of Multiple Leaf Diseases Using Inception-ResNet V2 (CNN Architecture)”, ijariie,vol.8,no.2,pp. 2395-4396.
  20. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).‏
  21. Jia, W., Gao, J., Xia, W., Zhao, Y., Min, H., & Lu, J. T. (2021). A performance evaluation of classic convolutional neural networks for 2D and 3D palmprint and palm vein recognition. International Journal of Automation and Computing, 18(1), 18-44.‏
  22. Shaees, S., Naeem, H., Arslan, M., Naeem, M. R., Ali, S. H., & Aldabbas, H. (2020, September). Facial emotion recognition using transfer learning. In 2020 International Conference on Computing and Information Technology (ICCIT-1441) (pp. 1-5). IEEE.‏
  23. Minaee, S., Minaei, M., & Abdolrashidi, A. (2021). Deep-emotion: Facial expression recognition using attentional convolutional network. Sensors, 21(9), 3046.‏
  24. Debnath, T., Reza, M. M., Rahman, A., Beheshti, A., Band, S. S., & Alinejad-Rokny, H. (2022). Four-layer ConvNet to facial emotion recognition with minimal epochs and the significance of data diversity. Scientific Reports, 12(1), 6991.‏
Index Terms

Computer Science
Information Sciences

Keywords

Face Expressions DNNs InceptionResnet-V2.