CFP last date
20 February 2025
Reseach Article

Ontology-Driven Enhancements in Statistical Machine Translation: Methods and Applications

by Daniel Rojas Plata, No´e Alejandro Castro S´anchez
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 64
Year of Publication: 2025
Authors: Daniel Rojas Plata, No´e Alejandro Castro S´anchez
10.5120/ijca2025924438

Daniel Rojas Plata, No´e Alejandro Castro S´anchez . Ontology-Driven Enhancements in Statistical Machine Translation: Methods and Applications. International Journal of Computer Applications. 186, 64 ( Jan 2025), 7-13. DOI=10.5120/ijca2025924438

@article{ 10.5120/ijca2025924438,
author = { Daniel Rojas Plata, No´e Alejandro Castro S´anchez },
title = { Ontology-Driven Enhancements in Statistical Machine Translation: Methods and Applications },
journal = { International Journal of Computer Applications },
issue_date = { Jan 2025 },
volume = { 186 },
number = { 64 },
month = { Jan },
year = { 2025 },
issn = { 0975-8887 },
pages = { 7-13 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number64/ontology-driven-enhancements-in-statistical-machine-translation-methods-and-applications/ },
doi = { 10.5120/ijca2025924438 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-01-31T17:28:36+05:30
%A Daniel Rojas Plata
%A No´e Alejandro Castro S´anchez
%T Ontology-Driven Enhancements in Statistical Machine Translation: Methods and Applications
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 64
%P 7-13
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper analyzes the role of ontologies in improving translation systems. Statistical-based technologies were chosen as the analysis model, as they do not rely on grammar-based models or any other linguistic implementation. Since this architecture is based solely on probabilistic inferences, implementations like ontologies can help reduce ambiguity and thus improve the semantic and lexical aspects, which remain persistent issues. Specifically, this study reviews these problems and outlines guidelines for ontology development.

References
  1. N. Alalwan, H. Zedan, and f. Siewe. Generating owl ontology for database integration. In 2009 Third International Conference on Advances in Semantic Processing, pages 22–31, 2009.
  2. J. A. Bateman. Ontology construction and natural language. In Proceedings of the International Workshop on Formal Ontology, pages 83–93, 1993.
  3. M. A. Ch´eragui. Theoretical overview of machine translation. In Proceedings ICWIT 2012, pages 160–169, 2012.
  4. S. El-Sappagh, F. Franda, F. Ali, and K. S. Kwak. Snomed ct standard ontology based on the ontology for general medical science. BMC medical informatics and decision making, 18:1–19, 2018.
  5. J. Hutchins. Machine translation: A concise history. Computer aided translation: Theory and practice, 13:1–20, 2007.
  6. G. H´eja, G. Surj´an, and P. Varga. Ontological analysis of snomed ct. BMC medical informatics and decision making, 8:1–5, 2008.
  7. P. Koehn. Europarl: A parallel corpus for statistical machine translation. In MT Summit X, 2005.
  8. K. Mahesh and S. Nirenburg. Meaning representation for knowledge sharing in practical machine translation. In Proceedings of FLAIRS-96 special track on Information Interchange, Florida AI Research Symposium, 1996.
  9. M. A. Musen. The prot´eg´e project: A look back and a look forward. AI Matters, 1(4):4–12, 2015.
  10. A. Navigli. The Oxford Handbook of Computational Linguistics, chapter Ontologies, pages 518–547. Oxford University Press, 2nd edition, 2022.
  11. S. Nirenburg, V. Raskin, and B. Onyshkevych. Apologiae ontologiae. In Proceedings of the Conference on Theoretical and Methodological Issues in Machine Translation, 1995.
  12. M. D. Okpor. Machine translation approaches: issues and challenges. International Journal of Computer Science Issues, 11(5):159–165, 2014.
  13. M. Popovic. Class error rates for evaluation of machine translation output. In Proceedings of the Seventh Workshop on Statistical Machine Translation, Association for Computational Linguistics, pages 71–75, 2012.
  14. P. L. Schuyler, W. T. Hole, M. S. Tuttle, and D. D. Sherertz. The umls metathesaurus: representing different views of biomedical concepts. Bulletin of the Medical Library Association, 81(2):217–225, 1993.
  15. R. Skadin¸ ˇs. Spatial ontology in statistical machine translation. In Proceedings of the Ninth International Baltic Conference Baltic DBIS 2010, pages 409–421, 2010.
  16. Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Ł. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.
Index Terms

Computer Science
Information Sciences
Ontologies
Machine Translation

Keywords

Statistical Translation Semantic Analysis Natural Language Processing Knowledge Representation