CFP last date
20 January 2025
Reseach Article

AI Driven Brain Tumor Segmentation using U-Net: A Deep Learning Approach

by Okunade Temilola, Amusu Mary I., Aremu Idris A., Tiamiyu Olalekan S., Ganiu Serifat, Davies Muyis
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 59
Year of Publication: 2025
Authors: Okunade Temilola, Amusu Mary I., Aremu Idris A., Tiamiyu Olalekan S., Ganiu Serifat, Davies Muyis
10.5120/ijca2024924228

Okunade Temilola, Amusu Mary I., Aremu Idris A., Tiamiyu Olalekan S., Ganiu Serifat, Davies Muyis . AI Driven Brain Tumor Segmentation using U-Net: A Deep Learning Approach. International Journal of Computer Applications. 186, 59 ( Jan 2025), 1-5. DOI=10.5120/ijca2024924228

@article{ 10.5120/ijca2024924228,
author = { Okunade Temilola, Amusu Mary I., Aremu Idris A., Tiamiyu Olalekan S., Ganiu Serifat, Davies Muyis },
title = { AI Driven Brain Tumor Segmentation using U-Net: A Deep Learning Approach },
journal = { International Journal of Computer Applications },
issue_date = { Jan 2025 },
volume = { 186 },
number = { 59 },
month = { Jan },
year = { 2025 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number59/ai-driven-brain-tumor-segmentation-using-u-net-a-deep-learning-approach/ },
doi = { 10.5120/ijca2024924228 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-01-03T00:30:36.796759+05:30
%A Okunade Temilola
%A Amusu Mary I.
%A Aremu Idris A.
%A Tiamiyu Olalekan S.
%A Ganiu Serifat
%A Davies Muyis
%T AI Driven Brain Tumor Segmentation using U-Net: A Deep Learning Approach
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 59
%P 1-5
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Brain tumors are brought on by the growth of aberrant cells in an unfavorable region of the brain. There are two types: malignant tumors, which are more aggressive and carcinogenic and can spread to other parts of the body, and benign tumors, which are less aggressive and non-cancerous. One of the deadliest types of cancer, a brain tumor is a life-threatening condition. Early identification and precise segmentation constitute the first step in the treatment of brain tumors. The most used medical imaging technique for assessing brain tumors is MRI (Magnetic Resonance Imaging). Manual segmentation requires a lot of time and effort and is subject to human error and judgment. An automatic segmentation technique based on U-Net, a Convolutional Neural Network (CNN), was proposed in this study, developed for biomedical imaging. The BraTS 2021 dataset, which includes three-dimensional MRI images in four different modalities (T1, T1ce, T2, and T2 Flair, each with four labels), was used to train and test the network. The final model has a 99.4 percent accuracy rate.

References
  1. Afshar, P., Mohammadi A., & Plataniotis, K. N. (2018). BrainTumor Type Classification via Capsule Networks. 2018 25th IEEE International Conference on Image Processing (ICIP), 3129-3133. https://doi.org/10.1109/ICIP.2018.8451379
  2. Baid, U., Ghodasara, S., Mohan, S., Bilello, M., Calabrese, E., Colak, E., ... & Bakas, S. (2021). The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314.
  3. Bakas, S., H. Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J. S., et al. (2017). Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features, Nature Scientific Data, 4:170117 (2017) DOI: 10.1038/sdata.2017.117
  4. Charfi, S., Lahmyed, R., & Rangarajan, L. (2014). A novel approach for brain tumor detection using neural network. International Journal of Research in Engineering and Technology, 2(7), 93-104.
  5. Citak-Er, F., Firat, Z., Kovanlikaya, I., Ture, U., &Ozturk-Isik, E. (2018). Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T. Computers in Biology and Medicine, 99(1) 154-160. https://doi.org/10.1016/j.compbiomed.2018.06.009
  6. El-Amir, H., & Hamdy, M. (2020). Deep Learning Pipeline: Building a Deep Learning Model with TensorFlow (1st ed.). Apress. https://doi.org/10.1007/978-1-4842-5349-6
  7. Feng, X., Tustison, N. J., Patel, S. H. & Meyer, C. H. (2020). Brain Tumor Segmentation Using an Ensemble of 3D U-Nets and Overall Survival Prediction Using Radiomic Features. Frontiers in Computational Neuroscience. Vol.14 (2020). https://doi.org/10.3389/fncom.2020.00025
  8. Frniak, M., Kamencay, P., Markovic, M., Dubovan, J., & Dado, M. (2019). The vehicle classification based on neural networks in intelligent transport systems. 2019 17th International Conference on Emerging eLearning Technologies and Applications (ICETA), 21-22. https://doi.org/10.1109/ICETA48886.2019.9040153
  9. Glassman, N., (2010). Magnetic Resonance Imaging. Journal of Consumer Health On the Internet, 14(3), 308-321. https://doi.org/10.1080/15398285.2010.502023
  10. Kalaiselvi, T., Padmapriya, S., Sriramakrishnan, P., & Somasundaram, K. (2020). Deriving tumor detection models using convolutional neural networks from MRI of human brain scans. International Journal of Information Technology, 12(2), 403-408. http://dx.doi.org/10.1007/s41870-020-00438-4
  11. Kamnitsas, K., Lediga, C., Newcombe, V. F. J., Simpson, J. P., Kaneb, A.D., Menon, D. K., et al. (2017). Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal, 36, 61–78. https://doi.org/10.1016/j.media.2016.10.004
  12. Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J. et al. (2015). The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015) DOI: 10.1109/TMI.2014.2377694
  13. Mohsen H., El-Dahshan, E. A., El-Horbaty, E. M., & Salem, A. M. (2018). Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal, 3(1), 68-71. https://doi.org/10.1016/j.fcij.2017.12.001.
  14. Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Transactions on Medical Imaging, 35(5), 1240-1251. https://doi.org/10.1109/TMI.2016.2538465
  15. Ronneberger, O., Fischer, P. &Brox, T. (2015 U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. https://doi.org/10.48550/arXiv.1505.04597
  16. Saxena, P., Maheshwari, S., Maheshwari, A. (2019). Predictive modeling of brain tumor: a deep learning approach. International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV-2020). https://dx.doi.org/10.13140/RG.2.2.22911.76963
  17. Shahzadi, I., Tang, T. B., Meriadeau, F., & Quyyum, A. (2018). CNN-LSTM: Cascaded Framework For Brain Tumour Classification. 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 633-637. https://dx.doi.org/10.1109/IECBES.2018.8626704
  18. Singh, H., Verma, S., &Marwah, G. (2015). The New Approach for Medical Enhancement in Texture Classification and Feature Extraction of Lung MRI Images by using Gabor Filter with Wavelet Transform. Indian Journal of Science and Technology, 8(35), 1-7. http://dx.doi.org/10.17485/ijst/2015/v8i35/77238
  19. Tiwari, A., Srivastava, S., & Pant, M. (2020). Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019. Pattern Recognition Letters, 131, 244-260. https://doi.org/10.1016/j.patrec.2019.11.020
  20. Aremu Idris A., Oluwatuyi Rachael F., Amusu Mary I., Okuade Temilola A., Tiamiyu Olalekan S. (2024). Ethical Consideration in Artificial Intelligent International Journal of Computer Applications 186 (38) 0975 – 8887 10.5120/ijca202492341760.
Index Terms

Computer Science
Information Sciences

Keywords

Image segmentation MRI Brain tumor CNN non-cancerous