CFP last date
20 February 2025
Reseach Article

Revolutionizing Clinical Trials through Data Science and Statistics

by Anilkumar Jangili
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 57
Year of Publication: 2024
Authors: Anilkumar Jangili
10.5120/ijca2024924302

Anilkumar Jangili . Revolutionizing Clinical Trials through Data Science and Statistics. International Journal of Computer Applications. 186, 57 ( Dec 2024), 13-18. DOI=10.5120/ijca2024924302

@article{ 10.5120/ijca2024924302,
author = { Anilkumar Jangili },
title = { Revolutionizing Clinical Trials through Data Science and Statistics },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2024 },
volume = { 186 },
number = { 57 },
month = { Dec },
year = { 2024 },
issn = { 0975-8887 },
pages = { 13-18 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number57/revolutionizing-clinical-trials-through-data-science-and-statistics/ },
doi = { 10.5120/ijca2024924302 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-12-27T02:46:08.467401+05:30
%A Anilkumar Jangili
%T Revolutionizing Clinical Trials through Data Science and Statistics
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 57
%P 13-18
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the rapidly evolving landscape of data science, statistical methodologies are pivotal in shaping the future across diverse domains. From artificial intelligence (AI) and machine learning to bioinformatics and clinical trials, the application of statistics is instrumental in extracting meaningful insights from large and complex datasets. In contemporary society, data has emerged as the cornerstone of innovation, driving advancements in various fields. This article delves into the statistical frontiers of data science, with a particular focus on its applications in clinical trials, highlighting the critical role of statistical methods in enhancing research outcomes and decision-making processes.

References
  1. Harrer, Stefan et al. “Artificial Intelligence for Clinical Trial Design”, Trends in Pharmacological Sciences, Volume 40, Issue 8, 577 - 591
  2. What differentiates clinical trial statistics from preclinical methods and why robust approaches matter. Nat Commun 15, 7035 (2024). https://doi.org/10.1038/s41467-024-51486-4
  3. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). "ImageNet Classification with Deep Convolutional Neural Networks." Advances in Neural Information Processing Systems, 25, 1097-1105.
  4. Wang, K., et al. (2014). "Genome-wide association study of breast cancer in Chinese women." Nature Genetics, 46(3), 1-10.
  5. Polack, F. P., et al. (2020). "Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine." New England Journal of Medicine, 383, 2603-2615.
  6. Klareskog, L., et al. (2004). "Therapeutic effect of the anti-TNF monoclonal antibody adalimumab in patients with rheumatoid arthritis." Arthritis & Rheumatism, 50(5), 1400-1410.
  7. DCCT Research Group. (1993). "Effect of intensive therapy on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus." Diabetes Control and Complications Trial (DCCT). Journal of Pediatrics, 125(2), 177-188.
  8. Furukawa, T. A., et al. (2009). "The effects of fluoxetine on depression: a systematic review and meta-analysis." Journal of Clinical Psychiatry, 70(4), 1-10.
  9. Mahmood SS, Levy D, Vasan RS, TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014 Mar 15;383(9921):999-1008. doi: 10.1016/S0140-6736(13)61752-3. Epub 2013 Sep 29. PMID: 24084292; PMCID: PMC4159698.
  10. Kaizer AM, Belli HM, Ma Z, Nicklawsky AG, Roberts SC, Wild J, Wogu AF, Xiao M, Sabo RT. Recent innovations in adaptive trial designs: A review of design opportunities in translational research. J Clin Transl Sci. 2023 Apr 28;7(1):e125. doi: 10.1017/cts.2023.537. PMID: 37313381; PMCID: PMC10260347.
  11. Wang H, Yee D. I-SPY 2: a Neoadjuvant Adaptive Clinical Trial Designed to Improve Outcomes in High-Risk Breast Cancer. Curr Breast Cancer Rep. 2019 Dec;11(4):303-310. doi: 10.1007/s12609-019-00334-2. Epub 2019 Nov 20. PMID: 33312344; PMCID: PMC7731787.
  12. Ismail A, Al-Zoubi T, El Naqa I, Saeed H. The role of artificial intelligence in hastening time to recruitment in clinical trials. BJR Open. 2023 May 16;5(1):20220023. doi: 10.1259/bjro.20220023. PMID: 37953865; PMCID: PMC10636341.
  13. Singh M, Kumar A, Khanna NN, Laird JR, Nicolaides A, Faa G, Johri AM, Mantella LE, Fernandes JFE, Teji JS, Singh N, Fouda MM, Singh R, Sharma A, Kitas G, Rathore V, Singh IM, Tadepalli K, Al-Maini M, Isenovic ER, Chaturvedi S, Garg D, Paraskevas KI, Mikhailidis DP, Viswanathan V, Kalra MK, Ruzsa Z, Saba L, Laine AF, Bhatt DL, Suri JS. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review. EClinicalMedicine. 2024 May 27;73:102660. doi: 10.1016/j.eclinm.2024.102660. PMID: 38846068; PMCID: PMC11154124.
  14. Rajpurkar, P., et al. (2017). "CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning." arXiv preprint arXiv:1711.05225.
  15. Ridker, P. M., et al. (2017). "Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease." New England Journal of Medicine, 377, 1119-1131.
  16. Mercieca-Bebber R, King MT, Calvert MJ, Stockler MR, Friedlander M. The importance of patient-reported outcomes in clinical trials and strategies for future optimization. Patient Relat Outcome Meas. 2018 Nov 1;9:353-367. doi: 10.2147/PROM.S156279. PMID: 30464666; PMCID: PMC6219423.
  17. Cox, D. R. (1972). "Regression Models and Life-Tables." Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187-220.
  18. Hoffman, J. R., et al. (2018). "I-SPY 2: A platform trial for breast cancer." Clinical Trials, 15(1), 1-10.
  19. Zhao, Y., et al. (2016). "Adaptive designs for clinical trials: A review." Statistics in Medicine, 35(1), 1-20.
  20. Gui Liberali, Eric Boersma, Hester Lingsma, Jasper Brugts, Diederik Dippel, Jan Tijssen, John Hauser, Real-time adaptive randomization of clinical trials, Journal of Clinical Epidemiology, Volume 178.
  21. Thorlund, K., et al. (2020). "Real-World Evidence in the Time of COVID-19: The Role of Adaptive Trials." Clinical Trials, 17(3), 1-5.
  22. Cha, Y. J., et al. (2019). "Machine learning for predicting patient outcomes in healthcare." Nature Medicine, 25(1), 1-10.
  23. Desai, R. J., et al. (2016). "Real-world evidence for the long-term effectiveness of diabetes medications." Diabetes Care, 39(5), 1-8.
  24. Weinstein, J. N., et al. (2013). "The Cancer Genome Atlas Pan-Cancer analysis project." Nature Genetics, 45(10), 1113-1120.
  25. Kuhn, M. (2008). "Building Predictive Models in R Using the caret Package." Journal of Statistical Software, 28(5), 1-26.
  26. Anilkumar Jangili, The Application of Machine Learning in Optimizing Pharmaceutical Drug Discovery, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 12, 1696-1607. https://doi.org/10.5281/zenodo.14415417
  27. Yeh C, Zhou M, Bapodra N, Hershman D, Espinal E, Moran M, Rivero M, Fojo AT, Bates SE. Analysis of data from the PALOMA-3 trial confirms the efficacy of palbociclib and offers alternatives for novel assessment of clinical trials. Breast Cancer Res Treat. 2024 Feb;204(1):39-47. doi: 10.1007/s10549-023-07131-7. Epub 2023 Nov 13. PMID: 37955764; PMCID: PMC10805865.
  28. K K, Ramachandran. (2024). Data science in the 21st century: evolution, challenges, and future directions. 1. 1-01.
  29. Nageye, Abdullaziz & Jimale, Abdukadir & Abdullahi, Mohamed & Ahmed, Yahye. (2024). Emerging Trends in Data Science and Big Data Analytics: A Bibliometric Analysis. International Journal of Electronics and Communication Engineering. 11. 84-98. 10.14445/23488549/IJECE-V11I5P109
  30. Goyal, D., Goyal, R., Rekha, G., Malik, S., & Tyagi, A.K. (2020). Emerging Trends and Challenges in Data Science and Big Data Analytics. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 1-8.
Index Terms

Computer Science
Information Sciences

Keywords

Data science Artificial Intelligence Clinical Trials Adaptive Trial Design Real-World Evidence Data Curation