CFP last date
20 February 2025
Reseach Article

Adaptive Context-Aware Personalized Information Retrieval: Enhancing Precision with Evolutionary Machine Learning

by Jaspal Kaur Naranjan Singh, Patrice Francois Boursier
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 57
Year of Publication: 2024
Authors: Jaspal Kaur Naranjan Singh, Patrice Francois Boursier
10.5120/ijca2024924297

Jaspal Kaur Naranjan Singh, Patrice Francois Boursier . Adaptive Context-Aware Personalized Information Retrieval: Enhancing Precision with Evolutionary Machine Learning. International Journal of Computer Applications. 186, 57 ( Dec 2024), 1-6. DOI=10.5120/ijca2024924297

@article{ 10.5120/ijca2024924297,
author = { Jaspal Kaur Naranjan Singh, Patrice Francois Boursier },
title = { Adaptive Context-Aware Personalized Information Retrieval: Enhancing Precision with Evolutionary Machine Learning },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2024 },
volume = { 186 },
number = { 57 },
month = { Dec },
year = { 2024 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number57/adaptive-context-aware-personalized-information-retrieval-enhancing-precision-with-evolutionary-machine-learning/ },
doi = { 10.5120/ijca2024924297 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-12-27T02:46:08.452488+05:30
%A Jaspal Kaur Naranjan Singh
%A Patrice Francois Boursier
%T Adaptive Context-Aware Personalized Information Retrieval: Enhancing Precision with Evolutionary Machine Learning
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 57
%P 1-6
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This study presents the Contextually Aware Personalized Information Retrieval (CAPIR) system. It is designed to address the limitations of traditional information retrieval (IR) models, which often rely on static keyword-based methods that neglect user context. CAPIR combines contextual awareness with evolutionary machine learning (EML), dynamically adapting to factors such as user behavior, location, and time. This approach improves the precision and relevance of search results by continuously refining retrieval strategies based on user interactions and feedback. Quantitative evaluation using precision, recall, and Mean Average Precision (MAP) showed significant improvements over traditional IR models, while qualitative feedback highlighted CAPIR’s adaptability to evolving user needs. CAPIR’s framework and experimental validation demonstrate its potential as a robust solution for environments requiring flexible and adaptive IR capabilities.

References
  1. Liu, J., Liu, C., and Belkin, N. J. 2020. Personalization in text information retrieval: A survey. Journal of the Association for Information Science and Technology, 71(3), 349–369
  2. Zou, J., Aliannejadi, M., Kanoulas, E., Pera, M. S., and Liu, Y. 2023. Users Meet Clarifying Questions: Toward a Better Understanding of User Interactions for Search Clarification. ACM Transactions on Information Systems, 41(1), 1–25.
  3. Ibrihich, S., Oussous, A., Ibrihich, O., & Esghir, M. 2022. A Review on recent research in information retrieval. Procedia Computer Science, 201(C), 777–782.
  4. Shah, C., and Bender, E. M. 2022. Situating search. CHIIR 2022 - Proceedings of the 2022 Conference on Human Information Interaction and Retrieval, 221–232.
  5. Cummins, R., Paik, J. H., and Lv, Y. 2015. A Pólya Urn Document Language Model for Improved. 33(4), 1–37.
  6. Merrouni, Z. A., Frikh, B., and Ouhbi, B. 2019. Toward Contextual Information Retrieval: A Review and Trends. Procedia Computer Science, 148, 191–200.
  7. Azad, H. K., and Deepak, A. 2019. Query expansion techniques for information retrieval: A survey. Information Processing and Management, 56(5), 1698–1735.
  8. Tamine, L., and Daoud, M. 2018. Evaluation in contextual information retrieval: Foundations and recent advances within the challenges of context dynamicity and data privacy. ACM Computing Surveys, 51(4).
  9. Abualigah, L., Gandomi, A. H., Elaziz, M. A., Hamad, H. Al, Omari, M., Alshinwan, M., and Khasawneh, A. M. 2021. Advances in meta-heuristic optimization algorithms in big data text clustering. Electronics (Switzerland), 10(2), 1–29.
  10. Gomes, S., Boon, M., & Hoeber, O. 2022. A Study of Cross-Session Cross-Device Search Within an Academic Digital Library. SIGIR 2022 - Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 384–394
  11. Irfan, S., and Ghosh, S. 2017. Optimization of information retrieval using evolutionary computation: A survey. International Conference on Computing, Communication and Automation (ICCCA), 328-333
  12. Gupta, V., Sharma, D. K., and Dixit, A. 2021. Review of Information Retrieval: Models, Performance Evaluation Techniques and Applications. International Journal of Sensors Wireless Communications and Control, 11(9), 896-909. (Library)
  13. Chavhan, S. 2022. A Heuristics approach-based hybrid method for Feature Selection for Ranking using Machine Learning with Learning to Rank.
  14. Mhawi, D. N., Oleiwi, H. W., Saeed, N. H., and Al-Taie, H. L. 2022. An Efficient Information Retrieval System Using Evolutionary Algorithms. Network, 2(4), 583–605.
  15. Ibrahim, Osman Ali Sadek. 2024. Using exploration and exploitation techniques to improve ranking models through (1+ 1)-Evolutionary Algorithms.
  16. Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., and Gao, J. 2020. Deep Learning Based Text Classification: A Comprehensive Review. 1(1), 1–43.
  17. Mohammed, M. T., and Rashid, O. F. 2023. Document retrieval using term frequency inverse sentence frequency weighting scheme. Indonesian Journal of Electrical Engineering and Computer Science, September, 1478–1485.
  18. Virkar, S., Alexopoulos, C., Stavropoulou, S., Tsekeridou, S., and Novak, A. S. 2020. User-centric decision support system design in legal informatics: A typology of users. ACM International Conference Proceeding Series, September, 711–722.
Index Terms

Computer Science
Information Sciences
Information Retrieval
Machine Learning
Personalization
Contextual Awareness
Evolutionary Algorithms
Adaptive Systems

Keywords

Contextually Aware Information Retrieval Personalized Information Retrieval Evolutionary Machine Learning Precision and Recall User-Centric Search Adaptation Dynamic Search Refinement