CFP last date
20 February 2025
Reseach Article

Detection of Suicidal Ideation on Social Media using Machine Learning Approaches

by Ashraful Goni, Md. Umor Faruk Jahangir, Rajarshi Roy Chowdhury, Farjana Akter, Khaled Hussain
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 51
Year of Publication: 2024
Authors: Ashraful Goni, Md. Umor Faruk Jahangir, Rajarshi Roy Chowdhury, Farjana Akter, Khaled Hussain
10.5120/ijca2024924161

Ashraful Goni, Md. Umor Faruk Jahangir, Rajarshi Roy Chowdhury, Farjana Akter, Khaled Hussain . Detection of Suicidal Ideation on Social Media using Machine Learning Approaches. International Journal of Computer Applications. 186, 51 ( Nov 2024), 8-14. DOI=10.5120/ijca2024924161

@article{ 10.5120/ijca2024924161,
author = { Ashraful Goni, Md. Umor Faruk Jahangir, Rajarshi Roy Chowdhury, Farjana Akter, Khaled Hussain },
title = { Detection of Suicidal Ideation on Social Media using Machine Learning Approaches },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2024 },
volume = { 186 },
number = { 51 },
month = { Nov },
year = { 2024 },
issn = { 0975-8887 },
pages = { 8-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number51/detection-of-suicidal-ideation-on-social-media-using-machine-learning-approaches/ },
doi = { 10.5120/ijca2024924161 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-12-01T00:09:59.618818+05:30
%A Ashraful Goni
%A Md. Umor Faruk Jahangir
%A Rajarshi Roy Chowdhury
%A Farjana Akter
%A Khaled Hussain
%T Detection of Suicidal Ideation on Social Media using Machine Learning Approaches
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 51
%P 8-14
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Early detection and prevention in suicide cases are crucial for saving lives, as timely interventions can reduce the risk of self-harm. Identifying individuals at risk before an incident occurs is a challenging task. The growing use of social media offers unique insights into individuals' behaviours like thoughts, feelings, and intentions. Therefore, this study is essential as understanding effective methods for identifying and preventing suicide can help address a major public health concern and save lives. This research addresses the use of machine learning (ML) models for identifying suicide cases and conversely, preventing them based on social media posts. In this paper, six ML classifiers, including Support Vector Machine (SVM), Naive Bayes (NB), Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), and XGBoost (XGB), are employed for the classification task using social platforms data analysis. The proposed ML model’s performances are evaluated using the publicly available datasets from the Kaggle and Reddit. Compared with all the other ML models SVM shows as the top performer with an accuracy of 93.85%, precision of 93.86%, recall of 93.85%, and an F1-score of 93.85, whilst the LR classifier achieved almost similar results. On the other hand, the DT classifier gained lowest classification performances. The study signifies that the effectiveness of the proposed ML approach in classifying nuanced mental health-related content, contributing to ongoing efforts in suicide prevention through advanced computational methods.

References
  1. “Global social media statistics research summary 2023 [June 2023].” Accessed: Jan. 30, 2024. [Online]. Available: https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-research/
  2. M. De Choudhury, “Role of social media in tackling challenges in mental health,” SAM 2013 - Proceedings of the 2nd International Workshop on Socially-Aware Multimedia, Co-located with ACM Multimedia 2013, pp. 49–52, 2013, doi: 10.1145/2509916.2509921.
  3. C. Berryman, C. J. Ferguson, and C. Negy, “Social Media Use and Mental Health among Young Adults,” Psychiatric Quarterly, vol. 89, no. 2, pp. 307–314, Jun. 2018, doi: 10.1007/S11126-017-9535-6/METRICS.
  4. M. De Choudhury, S. Counts, and E. Horvitz, “Predicting postpartum changes in emotion and behavior via social media,” Conference on Human Factors in Computing Systems - Proceedings, pp. 3267–3276, 2013, doi: 10.1145/2470654.2466447.
  5. S. Shoib et al., “Facebook and Suicidal Behaviour: User Experiences of Suicide Notes, Live-Streaming, Grieving and Preventive Strategies—A Scoping Review,” Int J Environ Res Public Health, vol. 19, no. 20, Oct. 2022, doi: 10.3390/IJERPH192013001.
  6. C. Behera, S. Kishore, R. Kaushik, A. K. Sikary, and S. Satapathy, “Suicide announced on Facebook followed by uploading of a handwritten suicide note,” Asian J Psychiatr, vol. 52, p. 102061, Aug. 2020, doi: 10.1016/J.AJP.2020.102061.
  7. D. Liu et al., “Suicidal ideation cause extraction from social texts,” IEEE Access, vol. 8, pp. 169333–169351, 2020, doi: 10.1109/ACCESS.2020.3019491.
  8. “WHO EMRO | World Suicide Prevention Day 2023 | News | Media centre.” Accessed: Jan. 30, 2024. [Online]. Available: https://www.emro.who.int/media/news/world-suicide-prevention-day-2023.html
  9. WHO, “Suicide.” Accessed: Sep. 26, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/suicide
  10. T. H. H. Aldhyani, S. N. Alsubari, A. S. Alshebami, H. Alkahtani, and Z. A. T. Ahmed, “Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models,” Int J Environ Res Public Health, vol. 19, no. 19, Oct. 2022, doi: 10.3390/ijerph191912635.
  11. M. Chatterjee, P. Samanta, P. Kumar, and D. Sarkar, “Suicide Ideation Detection using Multiple Feature Analysis from Twitter Data,” in 2022 IEEE Delhi Section Conference, DELCON 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/DELCON54057.2022.9753295.
  12. K. S. Baiulal and B. K. Nayak, “Suicidal analysis on social networks using machine learning,” in The Internet of Medical Things (IoMT) and Telemedicine Frameworks and Applications, IGI Global, 2022, pp. 230–247. doi: 10.4018/978-1-6684-3533-5.ch012.
  13. S. Renjith, A. Abraham, S. B. Jyothi, L. Chandran, and J. Thomson, “An ensemble deep learning technique for detecting suicidal ideation from posts in social media platforms,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 10, pp. 9564–9575, Nov. 2022, doi: 10.1016/j.jksuci.2021.11.010.
  14. E. Rajesh Kumar and K. V. S. N. R. Rao, “Sentiment Analysis using Social and Topic Context for Suicide Prediction,” 2021. [Online]. Available: www.ijacsa.thesai.org
  15. S. T. Rabani, Q. R. Khan, and A. M. Ud Din Khanday, “Detection of suicidal ideation on Twitter using machine learning & ensemble approaches,” Baghdad Science Journal, vol. 17, no. 4, pp. 1328–1339, Dec. 2020, doi: 10.21123/bsj.2020.17.4.1328.
  16. S. Boukil, F. El Adnani, L. Cherrat, A. E. El Moutaouakkil, and M. Ezziyyani, “Deep learning algorithm for suicide sentiment prediction,” in Advances in Intelligent Systems and Computing, Springer Verlag, 2019, pp. 261–272. doi: 10.1007/978-3-030-11884-6_24.
  17. M. Birjali, A. Beni-Hssane, and M. Erritali, “Machine Learning and Semantic Sentiment Analysis based Algorithms for Suicide Sentiment Prediction in Social Networks,” in Procedia Computer Science, Elsevier B.V., 2017, pp. 65–72. doi: 10.1016/j.procs.2017.08.290.
  18. “Suicide and Depression Detection.” Accessed: Jan. 30, 2024. [Online]. Available: https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch
  19. “Reddit SuicideWatch and Mental Health Collection (SWMH) for Suicidal Ideation and Mental Disorder Detection”, doi: 10.5281/ZENODO.6476179.
  20. “FastAPI - Swagger UI.” Accessed: Jan. 30, 2024. [Online]. Available: https://api.pushshift.io/docs
  21. “NLTK :: Natural Language Toolkit.” Accessed: Jan. 30, 2024. [Online]. Available: https://www.nltk.org/
  22. R. R. Chowdhury and P. E. Abas, “A survey on device fingerprinting approach for resource-constraint IoT devices: Comparative study and research challenges,” Nov. 01, 2022, Elsevier B.V. doi: 10.1016/j.iot.2022.100632.
  23. R. R. Chowdhury, A. C. Idris, and P. E. Abas, “Identifying SH-IoT devices from network traffic characteristics using random forest classifier,” Wireless Networks, 2023, doi: 10.1007/s11276-023-03478-3.
  24. R. R. Chowdhury, A. C. Idris, and P. E. Abas, “Device identification using optimized digital footprints,” IAES International Journal of Artificial Intelligence, vol. 12, no. 1, pp. 232–240, Mar. 2023, doi: 10.11591/ijai.v12.i1.pp232-240.
  25. R. R. Chowdhury, A. C. Idris, and P. E. Abas, “Internet of Things Device Classification using Transport and Network Layers Communication Traffic Traces,” International Journal of Computing and Digital Systems, vol. 12, no. 1, pp. 545–555, 2022, doi: 10.12785/ijcds/120144.
  26. R. R. Chowdhury, A. Che Idris, and P. E. Abas, “Packet-level and IEEE 802.11 MAC frame-level analysis for IoT device identification,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 30, pp. 1–1, 2022, doi: 10.3906/elk-1300-0632.3915.
  27. R. R. Chowdhury, A. C. Idris, and P. E. Abas, “Internet of things: Digital footprints carry a device identity,” in AIP Conference Proceedings 2643, 2023, p. 40003. doi: 10.1063/5.0111335.
  28. H. A. Khattak, M. A. Shah, S. Khan, I. Ali, and M. Imran, “Perception layer security in Internet of Things,” Future Generation Computer Systems, vol. 100, pp. 144–164, 2019, doi: 10.1016/j.future.2019.04.038.
  29. M. Hasan, Md. M. Islam, M. I. I. Zarif, and M. M. A. Hashem, “Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches,” Internet of Things, vol. 7, p. 100059, Sep. 2019, doi: 10.1016/j.iot.2019.100059.
  30. A. Goni, Md. U. F. Jahangir, and R. R. Chowdhury, “A Study on Cyber security: Analyzing Current Threats, Navigating Complexities, and Implementing Prevention Strategies,” International Journal of Research and Scientific Innovation, vol. X, no. XII, pp. 507–522, 2024, doi: 10.51244/ijrsi.2023.1012039.
  31. S. Aneja, N. Aneja, B. Bhargava, and R. R. Chowdhury, “Device fingerprinting using deep convolutional neural networks’,” 2022.
  32. S. Jian, Tong and Rendon, Bruno Costa and Ojuba, Emmanuel and Soltani, Nasim and Wang, Zifeng and Sankhe, Kunal and Gritsenko, Andrey and Dy, Jennifer and Chowdhury, Kaushik and Ioannidis, “Deep learning for RF fingerprinting: A massive experimental study,” IEEE Internet of Things Magazine, vol. 3, pp. 50–57, 2020.
  33. H. Asri, H. Mousannif, H. Al Moatassime, and T. Noel, “Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis,” Procedia Comput Sci, vol. 83, no. Fams, pp. 1064–1069, 2016, doi: 10.1016/j.procs.2016.04.224.
  34. J. H. J. C. Ortega, M. R. Resureccion, L. R. Q. Natividad, E. T. Bantug, A. C. Lagman, and S. R. Lopez, “An Analysis of Classification of Breast Cancer Dataset Using J48 Algorithm,” International Journal, vol. 9, no. 1.3, 2020.
  35. D. Roy, R. R. Chowdhury, A. Bin Nasser, A. Azmi, and M. Babaeianjelodar, “Item recommendation using user feedback data and item profile,” in AIP Conference Proceedings 2643, 2023, p. 40008. doi: 10.1063/5.0111349.
  36. Z. Liu, X. Lv, K. Liu, and S. Shi, “Study on SVM compared with the other text classification methods,” in 2nd International Workshop on Education Technology and Computer Science, ETCS 2010, 2010, pp. 219–222. doi: 10.1109/ETCS.2010.248.
  37. M. S. Islam, F. Elahi, M. Jubayer, and S. I. Ahmed, “A Comparative Study on Different Types of Approaches to Bengali document Categorization,” in International Conference on Engineering Research, Innovation and Education, Jan. 2017. [Online]. Available: http://prothom-alo.com,
  38. C. Cortes, V. Vapnik, and L. Saitta, “Support-vector networks,” Machine Learning 1995 20:3, vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
  39. I. Rish, “An empirical study of the naive Bayes classifier.”
  40. L. Breiman, “Random forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324/METRICS.
  41. D. R. Cox, “The Regression Analysis of Binary Sequences,” J R Stat Soc Series B Stat Methodol, vol. 20, no. 2, pp. 215–232, Jul. 1958, doi: 10.1111/J.2517-6161.1958.TB00292.X.
  42. J. R. Quinlan, “Induction of decision trees,” Machine Learning 1986 1:1, vol. 1, no. 1, pp. 81–106, Mar. 1986, doi: 10.1007/BF00116251.
  43. T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 13-17-August-2016, pp. 785–794, Aug. 2016, doi: 10.1145/2939672.2939785.
  44. “scikit-learn Tutorials — scikit-learn 1.4.0 documentation.” Accessed: Jan. 30, 2024. [Online]. Available: https://scikit-learn.org/stable/tutorial/index.html
  45. “sklearn.feature_extraction.text.TfidfVectorizer — scikit-learn 1.4.0 documentation.” Accessed: Jan. 30, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
Index Terms

Computer Science
Information Sciences

Keywords

Suicide Ideation Text Classification Machine Learning Social Media Platforms Suicide Prediction