CFP last date
20 January 2025
Reseach Article

Design of a Malaria Parasite Detection Model in Microscopic Images of Blood Cells using the Convolutional Neural Network Method

by Nurhaeni, Septyan Eka Prastya, Ahmad Hidayat, Fadhiyah Noor Anisa
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 51
Year of Publication: 2024
Authors: Nurhaeni, Septyan Eka Prastya, Ahmad Hidayat, Fadhiyah Noor Anisa
10.5120/ijca2024924165

Nurhaeni, Septyan Eka Prastya, Ahmad Hidayat, Fadhiyah Noor Anisa . Design of a Malaria Parasite Detection Model in Microscopic Images of Blood Cells using the Convolutional Neural Network Method. International Journal of Computer Applications. 186, 51 ( Nov 2024), 15-19. DOI=10.5120/ijca2024924165

@article{ 10.5120/ijca2024924165,
author = { Nurhaeni, Septyan Eka Prastya, Ahmad Hidayat, Fadhiyah Noor Anisa },
title = { Design of a Malaria Parasite Detection Model in Microscopic Images of Blood Cells using the Convolutional Neural Network Method },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2024 },
volume = { 186 },
number = { 51 },
month = { Nov },
year = { 2024 },
issn = { 0975-8887 },
pages = { 15-19 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number51/design-of-a-malaria-parasite-detection-model-in-microscopic-images-of-blood-cells-using-the-convolutional-neural-network-method/ },
doi = { 10.5120/ijca2024924165 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-12-01T00:09:59.625791+05:30
%A Nurhaeni
%A Septyan Eka Prastya
%A Ahmad Hidayat
%A Fadhiyah Noor Anisa
%T Design of a Malaria Parasite Detection Model in Microscopic Images of Blood Cells using the Convolutional Neural Network Method
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 51
%P 15-19
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The malaria examination technique through a microscope is the most commonly used examination in health facilities. However, microscopic examination techniques require special skills and take quite a long time. This research aims to develop a malaria parasite detection system model in blood cell images using deep learning technology to increase the accuracy and speed of detection with the Convolutional Neural Network (CNN) algorithm. This research was carried out in several stages consisting of data collection, image preprocessing, dividing training data and validation data, creating a model using CNN, and evaluating the model. A CNN model was created to classify blood cell images into two classes, namely infected and uninfected. The dataset used as a reference in forming a detection system model uses blood cell images from the open-source Kaggle, totaling 11,312 images. The CNN model evaluation results obtained an accuracy value of 97.17% in detecting blood cell images. These results show that the CNN model created can be used to detect malaria parasites using blood cell images.

References
  1. P. Pengembangan et al., “Dewan Redaksi.” [Online]. Available: http://pa3kn.dpr.go.id/kontak
  2. Dinas Kesehatan Kota Banjarmasin, “Profil Kesehatan Tahun 2023 Kota Banjarmasin,” Banjarmasin, 2024.
  3. J. Fitriany and A. Sabiq, “MALARIA,” 2018.
  4. J. E. Massamba, J. C. Djontu, C. J. Vouvoungui, C. Kobawila, and F. Ntoumi, “Plasmodium falciparum multiplicity of infection and pregnancy outcomes in Congolese women from southern Brazzaville, Republic of Congo,” Malar J, vol. 21, no. 1, Dec. 2022, doi: 10.1186/s12936-022-04105-w.
  5. R. Amin, “Pendeteksian Parasit Malaria Dalam Sel Darah Manusia Menggunakan Metode Convolutional Neural Network,” 2020.
  6. A. W. Setiawan et al., “Deteksi Malaria Berbasis Segmentasi Warna Citra Dan Pembelajaran Mesin Malaria Detection Using Color Image Segmentation And Machine Learning,” vol. 8, no. 4, pp. 769–776, 2021, doi: 10.25126/jtiik.202184377.
  7. J. Fitriany and A. Sabiq, “MALARIA,” 2018.
  8. W. Maulana Baihaqi, C. Raras, A. Widiawati, D. P. Sabila, and A. Wati, “Analisis Gambar Sel Darah Berbasis Convolution Neural Network untuk Mendiagnosis Penyakit Demam Berdarah Convolution Neural Network-Based Image Analysis of Blood Cells to Diagnose Dengue Fever,” Cogito Smart Journal |, vol. 7, no. 1, 2021.
  9. S. Rizal, N. Ibrahim, N. K. C. Pratiwi, S. Saidah, and R. Y. N. Fu’adah, “Deep Learning untuk Klasifikasi Diabetic Retinopathy menggunakan Model EfficientNet,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 8, no. 3, p. 693, Aug. 2020, doi: 10.26760/elkomika.v8i3.693.
  10. A. Nada Nafisa, E. Nia Devina Br Purba, F. Aulia Alfarisi Harahap, and N. Adawiyah Putri, “Implementasi Algoritma Convolutional Neural Network Arsitektur Model MobileNetV2 dalam Klasifikasi Penyakit Tumor Otak Glioma, Pituitary dan Meningioma,” Jurnal Teknologi Informasi, Komputer dan Aplikasinya (JTIKA), vol. 5, no. 1, pp. 53–61, Mar. 2023, [Online]. Available: http://jtika.if.unram.ac.id/index.php/JTIKA/
  11. P. Sarah Fransisca and N. Matondang, “Deteksi Citra Digital Penyakit Cacar Monyet menggunakan Algoritma Convolutional Neural Network dengan Arsitektur MobileNetV2 Digital Image Detection of Monkeypox Disease using Convolutional Neural Network Algorithm with MobilenetV2 Architecture”, [Online]. Available: http://journal.ipb.ac.id/index.php/jika
  12. R. Soekarta, M. Yusuf, M. Fadli Hasa, and N. Annisa Basri, “Implementasi Deep Learning Untuk Deteksi Jenis Obat Menggunakan Algoritma CNN Berbasis Website,” JIKA (Jurnal Informatika), vol. 7, no. 4, pp. 455–464, Nov. 2023.
  13. S. Devella and K. Arianto, “Deteksi Penyakit Malaria Menggunakan Convolutional Neural Network Berbasis Saliency (Detection of Malaria Using Convolutional Neural Network Based on Saliency).”
  14. A. Sains and E.-I. Komputasi Dan Teknologi Informasi, “Analisa Perbandingan Algoritma CNN Dan MLP Dalam Mendeteksi Penyakit COVID-19 Pada Citra X-Ray Paru,” 2021.
  15. D. P. Ayuni, Jasril, M. Irsyad, F. Yanto, and S. Sanjaya, “Augmentasi Data Pada Implemetasi Convolutional Neural Network Arsitektur Efficientnet-B3 Untuk Klasifikasi Penyakit Daun Padi,” ZONAsi: Jurnal Sistem Informasi, vol. 5, no. 2, pp. 239–249, 2023.
  16. J. Patterson and A. Gibson, Deep Learning : A Practitioner’s Approach. 2017. [Online]. Available: www.allitebooks.com
  17. A. B. Prakosa, Hendry, and R. Tanone, “Implementasi Model Deep Learning Convolutional Neural Network (CNN) Pada Citra Penyakit Daun Jagung Untuk Klasifikasi Penyakit Tanaman,” Jurnal Pendidikan Teknologi Informasi (JUKANTI), vol. 6, no. 1, pp. 107–116, Apr. 2023.
  18. S. Septhyan, R. Magdalena, and N. K. C. Pratiwi, “Deep Learning Untuk Deteksi Covid-19, Pneumonia, Dan Tuberculosis Pada Citra Rontgen Dada Menggunakan CNN Dengan Arsitektur Alexnet Deep Learning For The Detection Of Covid-19, Pneumonia, And Tuberculosis In Chest X-Ray Imaging Using Cnn With Alexnet Architecture,” e-Proceeding of Engineering, pp. 2869–2878, Dec. 2022.
  19. K. Azmi and S. Defit, “Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” JURNAL UNITEK, vol. 16, no. 1, 2023.
Index Terms

Computer Science
Information Sciences
Deep Learning
Detection Model

Keywords

Convolutional Neural Network Deep Learning Malaria