CFP last date
22 July 2024
Reseach Article

Analysis of Philogenetic SARS-CoV-2 on BLAST Query using Recursive Similarity Search

by Rodiah, Diana Tri Susetianingtias, Eka Patriya
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 27
Year of Publication: 2024
Authors: Rodiah, Diana Tri Susetianingtias, Eka Patriya
10.5120/ijca2024923754

Rodiah, Diana Tri Susetianingtias, Eka Patriya . Analysis of Philogenetic SARS-CoV-2 on BLAST Query using Recursive Similarity Search. International Journal of Computer Applications. 186, 27 ( Jul 2024), 13-19. DOI=10.5120/ijca2024923754

@article{ 10.5120/ijca2024923754,
author = { Rodiah, Diana Tri Susetianingtias, Eka Patriya },
title = { Analysis of Philogenetic SARS-CoV-2 on BLAST Query using Recursive Similarity Search },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2024 },
volume = { 186 },
number = { 27 },
month = { Jul },
year = { 2024 },
issn = { 0975-8887 },
pages = { 13-19 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number27/analysis-of-philogenetic-sars-cov-2-on-blast-query-using-recursive-similarity-search/ },
doi = { 10.5120/ijca2024923754 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-07-09T00:35:29.512580+05:30
%A Rodiah
%A Diana Tri Susetianingtias
%A Eka Patriya
%T Analysis of Philogenetic SARS-CoV-2 on BLAST Query using Recursive Similarity Search
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 27
%P 13-19
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

One method for examining the presence of mutations in the genetic diversity of SARS-CoV involves conducting a phylogenetic tree analysis. To construct a phylogenetic tree, it is necessary to obtain suitable RNA samples. This is achieved by comparing user queries to search for sequence similarity in the NCBI database using the BLAST algorithm. It is necessary to narrow down the sample by selecting data prior to constructing a phylogenetic tree using the BLAST Query. The purpose of this action is to streamline the process of interpreting the outcomes derived from the construction of a phylogenetic tree. This study presents a novel approach for enhancing the efficiency of the BLAST Query through the utilization of four recursive searches. The optimization of BLAST queries involves selecting taxa from the experimental phylogenetic tree that exhibit sufficient dissimilarity from the input taxa. These selected taxa are then utilized as query inputs in subsequent search optimizations. Additionally, the length of the query is specifically reduced in the ORF1ab gene region. The phylogenetic tree derived from the four experiments yielded divergent interpretations, particularly in the second experiment where the taxa exhibited a high degree of homology. The optimization technique employed for BLAST queries enables the reduction of taxa samples that are to be represented in the phylogenetic tree. The present study holds the potential to serve as a valuable resource for identifying samples and constructing a phylogenetic tree for SARS-CoV-2. This, in turn, can facilitate further genetic investigations pertaining to potential viral developments, including the examination of viral mutations.

References
  1. A. A. Balkhair, “Covid-19 pandemic: A new chapter in the history of infectious diseases,” Oman Med. J., vol. 35, no. 2, pp. 2–3, 2020, doi: 10.5001/OMJ.2020.41.
  2. J. Hiscott et al., “The global impact of the coronavirus pandemic,” Cytokine Growth Factor Rev., vol. 53, no. May, pp. 1–9, 2020, doi: 10.1016/j.cytogfr.2020.05.010.
  3. S. B. Kadam, G. S. Sukhramani, P. Bishnoi, A. A. Pable, and V. T. Barvkar, “SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights,” J. Basic Microbiol., vol. 61, no. 3, pp. 180–202, 2021, doi: 10.1002/jobm.202000537.
  4. S. Minchin and J. Lodge, “Understanding biochemistry: Structure and function of nucleic acids,” Essays Biochem., vol. 63, no. 4, pp. 433–456, 2019, doi: 10.1042/EBC20180038.
  5. D. Skanderson, M. Meauley, and J. O. E. Garrett, “M a n a g in g th e Risk of —,” vol. 53, no. March, pp. 74–80, 2015.
  6. N. C. for B. I. (NCBI), “No Title,” NCBI SARS-CoV-2 Resources, 2023. https://www.ncbi.nlm.nih.gov/sars-cov-2/
  7. P. V. Markov et al., “The evolution of SARS-CoV-2,” Nat. Rev. Microbiol., vol. 21, no. June, 2023, doi: 10.1038/s41579-023-00878-2.
  8. S. Chatterjee et al., “Whole-genome analysis and mutation pattern of SARS-CoV-2 during first and second wave outbreak in Gwangju, Republic of Korea,” Sci. Rep., vol. 12, no. 1, pp. 1–10, 2022, doi: 10.1038/s41598-022-14989-y.
  9. K. J. Menlove, M. Clement, and K. A. Crandall, “Chapter 1 Similarity Searching Using BLAST,” no. 1, pp. 1–22, doi: 10.1007/978-1-59745-251-9.
  10. K. C. Samal, J. P. Sahoo, L. Behera, and T. Dash, “Understanding the BLAST (Basic Local Alignment Search Tool) Program and a Step-by-step Guide for its use in Life Science Research,” Bhartiya Krishi Anusandhan Patrika, vol. 36, no. Of, pp. 55–61, 2021, doi: 10.18805/bkap283.
  11. A. E. Gorbalenya, “Phylogeny of Viruses ☆,” no. December 2016, pp. 1–7, 2017.
  12. D. Dylus, A. Altenhoff, S. Majidian, F. J. Sedlazeck, and C. Dessimoz, “Inference of phylogenetic trees directly from raw sequencing reads using Read2Tree,” Nat. Biotechnol., 2023, doi: 10.1038/s41587-023-01753-4.
  13. D. J. Witherspoon et al., “Genetic similarities within and between human populations,” Genetics, vol. 176, no. 1, pp. 351–359, 2007, doi: 10.1534/genetics.106.067355.
  14. D. Singh and S. V. Yi, “On the origin and evolution of SARS-CoV-2,” Exp. Mol. Med., vol. 53, no. 4, pp. 537–547, 2021, doi: 10.1038/s12276-021-00604-z.
  15. I. Syafarina, T. Wirahman, S. B. Iryanto, and A. L. Latifah, “Epidemic Data Analysis of Three Variants of COVID-19 Spread in Indonesia,” J. Ilmu Komput. dan Inf., vol. 15, no. 1, pp. 47–54, 2022, doi: 10.21609/jiki.v15i1.1055.
  16. P. Zhou et al., “A pneumonia outbreak associated with a new coronavirus of probable bat origin,” Nature, vol. 579, no. 7798, pp. 270–273, 2020, doi: 10.1038/s41586-020-2012-7.
  17. F. Wu et al., “A new coronavirus associated with human respiratory disease in China,” Nature, vol. 579, no. 7798, pp. 265–269, 2020, doi: 10.1038/s41586-020-2008-3.
  18. P. Stefanelli et al., “Whole genome and phylogenetic analysis of two SARSCoV-2 strains isolated in Italy in January and February 2020: Additional clues on multiple introductions and further circulation in Europe,” Eurosurveillance, vol. 25, no. 13, pp. 1–5, 2020, doi: 10.2807/1560-7917.ES.2020.25.13.2000305.
  19. G. Hu and L. Kurgan, “Sequence Similarity Searching,” Curr. Protoc. Protein Sci., vol. 95, no. 1, pp. 1–19, 2019, doi: 10.1002/cpps.71.
  20. G. Li, L. Zhang, and N. Du, “Relative synonymous codon usage of ORF1ab in SARS-CoV-2 and SARS-CoV,” Genes and Genomics, vol. 43, no. 11, pp. 1351–1359, 2021, doi: 10.1007/s13258-021-01136-6.
  21. M. Fahmi, Y. Kubota, and M. Ito, “Nonstructural proteins NS7b and NS8 are likely to be phylogenetically associated with evolution of 2019-nCoV,” Infect. Genet. Evol., vol. 81, no. March, p. 104272, 2020, doi: 10.1016/j.meegid.2020.104272.
  22. S. Srinivasan et al., “Structural Genomics of SARS-CoV-2 Indicates,” Viruses, vol. 12, no. 360, pp. 1–17, 2020.
  23. E. Sheikhzadeh, S. Eissa, A. Ismail, and M. Zourob, “Diagnostic techniques for COVID-19 and new developments,” Talanta, vol. 220, no. May, 2020, doi: 10.1016/j.talanta.2020.121392.
  24. G. F. Webster, T. Poyner, and B. Cunliffe, “Clinical review,” Bmj, vol. 325, no. 7362, p. 475, 2002, doi: 10.1136/bmj.325.7362.475.
  25. R. C. Edgar, “Sequence alignment replicates reveal errors in molecular phylogenies,” pp. 1–17, 2021.
  26. B. P. Blackburne and S. Whelan, “Measuring the distance between multiple sequence alignments,” vol. 28, no. 4, pp. 495–502, 2012, doi: 10.1093/bioinformatics/btr701.E. C. R. Id, J. H. Chariker, and D. Chung, “Variant analysis of 1 , 040 SARS-CoV-2 genomes,” no. Fig 2, pp. 1–18, 2020, doi: 10.1371/journal.pone.0241535.
  27. T. T. Nguyen, P. N. Pathirana, T. Nguyen, H. Nguyen, A. Bhatti, and C. Dinh, “Genomic Mutations and Changes in Protein Secondary Structure and Solvent Accessibility of SARS-CoV-2 ( COVID-19 Virus ),” vol. 2, 2020.
  28. N. Sharif, “Phylogenetic and whole genome analysis of first seven SARS-CoV-2 isolates in Bangladesh Graphical abstract :,” vol. 63, no. 2003, 2020.
  29. M. Binet, O. Gascuel, C. Scornavacca, E. J. P. Douzery, and F. Pardi, “Fast and accurate branch lengths estimation for phylogenomic trees,” BMC Bioinformatics, pp. 1–19, 2016, doi: 10.1186/s12859-015-0821-8.
  30. B. A. Yakici, H. A. Ogilvie, and L. Nakhleh, “Phylogenetic Network Dissimilarity Measures That Take Branch Lengths Into Account,” 2022.
  31. N. C. for B. I. (NCBI), “No Title,” Gen Bank, 2020, [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/OM065360
Index Terms

Computer Science
Information Sciences
DNA Analysis using Bioinformatics

Keywords

BLAST; ORF1a; Phylogenetic; Query; SARS-Cov-2