CFP last date
20 December 2024
Reseach Article

Operational Advancement Through Data-Driven Machine Learning Techniques

by Joyeshree Biswas, Md Masum Billah, Amit Deb Nath, Numair Bin Sharif, Iqtiar Md Siddique
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 15
Year of Publication: 2024
Authors: Joyeshree Biswas, Md Masum Billah, Amit Deb Nath, Numair Bin Sharif, Iqtiar Md Siddique
10.5120/ijca2024923527

Joyeshree Biswas, Md Masum Billah, Amit Deb Nath, Numair Bin Sharif, Iqtiar Md Siddique . Operational Advancement Through Data-Driven Machine Learning Techniques. International Journal of Computer Applications. 186, 15 ( Apr 2024), 45-51. DOI=10.5120/ijca2024923527

@article{ 10.5120/ijca2024923527,
author = { Joyeshree Biswas, Md Masum Billah, Amit Deb Nath, Numair Bin Sharif, Iqtiar Md Siddique },
title = { Operational Advancement Through Data-Driven Machine Learning Techniques },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2024 },
volume = { 186 },
number = { 15 },
month = { Apr },
year = { 2024 },
issn = { 0975-8887 },
pages = { 45-51 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number15/operational-advancement-through-data-driven-machine-learning-techniques/ },
doi = { 10.5120/ijca2024923527 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-04-27T03:06:39.075740+05:30
%A Joyeshree Biswas
%A Md Masum Billah
%A Amit Deb Nath
%A Numair Bin Sharif
%A Iqtiar Md Siddique
%T Operational Advancement Through Data-Driven Machine Learning Techniques
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 15
%P 45-51
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The layer-wise production paradigm of additive manufacturing technologies allows for the collecting of a huge number of pieces. This study focuses on the application of data analytics algorithms for real-time monitoring in additive manufacturing processes. The utilization of advanced analytics plays a pivotal role in enhancing the quality control and efficiency of these manufacturing techniques. The research explores how data-driven insights can be harnessed to identify, analyze, and rectify deviations in the manufacturing process, ensuring optimal performance and product quality. By integrating sophisticated monitoring algorithms, the study aims to create a robust framework that continuously analyzes various parameters during additive manufacturing. This includes monitoring factors such as temperature, pressure, and material properties in real-time. The collected data is processed through advanced analytics tools to detect anomalies or deviations from the expected standards. The implementation of machine learning algorithms further facilitates predictive maintenance and proactive adjustments, contributing to the overall reliability and effectiveness of additive manufacturing processes. The outcomes of this research hold significant implications for industries relying on additive manufacturing technologies, providing a foundation for improved process control and product quality. The study contributes to the growing field of Industry 4.0 by showcasing the integration of data analytics as a key enabler for efficient and reliable additive manufacturing.

References
  1. Lee, S., Peng, J., Shin, D. and Suk Choi, Y., (2022). Data analytics approach for melt-pool geometries in metal additive manufacturing. Engineering and Structural material, 20, 972-978. https://doi.org/10.1080/14686996.2019.1671140
  2. Amini, Mohammad Hossein, Chang, Shing. (2022). A review of machine learning approaches for high dimensional process monitoring. Industrial and Manufacturing Systems Engineering.1-7.
  3. Gronle, Marc., Grasso, Marco.,Granito, Emidio., Schaal, Frederik., Colosimo, Bianca M. (2021). In-Situ Quality Process Monitoring in Additive Manufacturing. 2021 QSR Data Challenge Competition.
  4. Rahman, M. A., Bazgir, E., Hossain, S. S., & Maniruzzaman, M. (2024). Skin cancer classification using NASNet. International Journal of Science and Research Archive, 11(1), 775-785.
  5. S. B. Alam, M. N. Sakib, M. S. Ahsan, A. B. M. R. Sazzad and I. K. Chowdhury, "Simulation of Bremsstrahlung Production and Emission Process," 2011 Second International Conference on Intelligent Systems, Modelling and Simulation, Phnom Penh, Cambodia, 2011, pp. 249-252, doi: 10.1109/ISMS.2011.81.
  6. Rahmanul Hoque, Suman Das, Mahmudul Hoque and Ehteshamul Haque, “Breast Cancer Classification using XGBoost”, World Journal of Advanced Research and Reviews, 2024.
  7. Bhuiyan, M. S., Chowdhury, I. K., Haider, M., Jisan, A. H., Jewel, R. M., Shahid, R., ... & Siddiqua, C. U. (2024). Advancements in Early Detection of Lung Cancer in Public Health: A Comprehensive Study Utilizing Machine Learning Algorithms and Predictive Models. Journal of Computer Science and Technology Studies, 6(1), 113-121.
  8. Chowdhury, I. K., Latif, S., & Hossain, M. S. (2016). Sentiment intensity analysis of informal texts. International Journal of Computer Applications, 147(10).
  9. Alam, S. B., Sakib, M. N., Sazzad, A. R., & Chowdhury, I. K. (2011, January). Simulation and Analysis of Advanced Nuclear Reactor and Kinetics Model. In 2011 Second International Conference on Intelligent Systems, Modelling and Simulation (pp. 241-244). IEEE.
  10. Alam, S. B., Sakib, M. N., Ahsan, M. S., Redwan, K., & Chowdhury, I. K. (2011, January). Simulation of Transmutation β by Decay Energetics. In 2011 Second International Conference on Intelligent Systems, Modelling and Simulation (pp. 245-248). IEEE.
  11. Kabir, H. M. D., Anwar, S., Alam, S. B., Rahman, K. S., Matin, M. A., & Chowdhury, I. K. (2010, December). Watermarking with fast and highly secured encryption for real-time speech signals. In 2010 IEEE International Conference on Information Theory and Information Security (pp. 446-451). IEEE.
  12. Kabir, H. M. D., Alam, S. B., Matin, M. A., & Chowdhury, I. K. (2010, December). A loss-less compression technique for high quality speech signals and its implementation with MPEG-4 ALS for better compression. In 2010 IEEE International Conference on Information Theory and Information Security (pp. 781-785). IEEE.
  13. Alam, S. B., Kabir, H. M. D., Sazzad, A. R., Redwan, K., Aziz, I., Chowdhury, I. K., & Matin, M. A. (2010, November). Can gen-4 nuclear power and reactor technology be safe and reliable future energy for developing countries?. In 2010 IEEE International Conference on Power and Energy (pp. 113-118). IEEE.
  14. Bhuiyan, M. S., Chowdhury, I. K., Haider, M., Jisan, A. H., Jewel, R. M., Shahid, R., ... & Siddiqua, C. U. (2024). Advancements in Early Detection of Lung Cancer in Public Health: A Comprehensive Study Utilizing Machine Learning Algorithms and Predictive Models. Journal of Computer Science and Technology Studies, 6(1), 113-121.
  15. Ehsan Bazgir, Ehteshamul Haque, Md. Maniruzzaman, Rahmanul Hoque, “Skin cancer classification using Inception Network”, World Journal of Advanced Research and Reviews, 2024, 21(02), 839–849.
  16. Ehsan Bazgir, Ehteshamul Haque, Numair Bin Sharif and Md. Faysal Ahmed, “Security aspects in IoT based cloud computing”, World Journal of Advanced Research and Reviews, 2023, 20(03), 540–551.
  17. Biswas, J., Das, S., Siddique, I. M., & Abedin, M. M. (2024). Sustainable Industrial Practices: Creating an Air Dust Removal and Cooling System for Highly Polluted Areas. European Journal of Advances in Engineering and Technology, 11(3), 1-11. https://doi.org/10.5281/zenodo.10776875.
  18. Noman, A. H. M., Das, K., & Andrei, S. (2020). A Modified Approach for Data Retrieval for Identifying Primary Causes of Deaths. ACET Journal of Computer Education and Research, 14(1), 1-13.
  19. Noman, A. H. M. (2018). WHO Data: A Modified Approach for Retrieval (Doctoral dissertation, Lamar University-Beaumont). Available at: https://scholar.google.com/scholar?oi=bibs&hl=en&q=related:WqiaY1iFCtUJ:scholar.google.com/.
  20. Noman, A.H.M., Mustaquim S.M. Molla, S., and Siqqique, M.I., (2024). Enhancing Operations Quality Improvement through Advanced Data Analytics. Journal of Computer Science Engineering and Software Testing. Vol. 10, Issue 1 (January – April, 2024) pp: (1-14). https://doi.org/10.46610/JOCSES.2024.v10i01.001.
  21. Biswas, J., Das, S. (2024). Investigating the effectiveness of a mobile wind turbine generating electricity from vehicle air movement. World Journal of Advanced Research and Reviews, 2024, 22(01), 210–218. https://doi.org/10.30574/wjarr.2024.22.1.0992.
  22. Molla, S., Bazgir, E., Mustaquim, S. M., Siddique, I. M., & Siddique, A. A. (2024). Uncovering COVID-19 conversations: Twitter insights and trends. World Journal of Advanced Research and Reviews, 21(1), 836-842.
  23. Mustaquim, S. M. (2024). Utilizing remote sensing data and ArcGIS for advanced computational analysis in land surface temperature modeling and land use property characterization. World Journal of Advanced Research and Reviews, 21(1), 1496-1507.
  24. Hoque, R., Das, S., Hoque, M., & Haque, E. (2024). Breast Cancer Classification using XGBoost. World Journal of Advanced Research and Reviews, 21(2), 1985-1994.
  25. Hasan, M. I., Tutul, M. T. A., Das, S., & Siddique, I. M. (2024). Adaptive Risk Management and Resilience in Automated Electronics Industry. Journal of Scientific and Engineering Research, 11(2), 82-92.
  26. Mustofa, R. (2020) "Bullwhip Effect Minimization Strategy Formulation: Keys to Enhancing Competitiveness and Performance”. International Conference on Mechanical, Industrial and Energy Engineering, December 19th-21st, Khulna, Bangladesh, 20-079.
  27. Biswas, J., (2024). Decoding COVID-19 Conversations with Visualization: Twitter Analytics and Emerging Trends. Journal of Computer Science and Software Testing, Volume- 10, Issue- 1.
  28. Rahmanul Hoque, Suman Das, Mahmudul Hoque and Ehteshamul Haque, "Breast Cancer Classification using XGBoost", World Journal of Advanced Research and Reviews, 2024, 21(02), 1985–1994.
  29. Bazgir, E., Haque, E., Sharif, N. B., & Ahmed, M. F. (2023). Security aspects in IoT based cloud computing. World Journal of Advanced Research and Reviews, 20(3), 540-551.
  30. Biswas, J., Mustaquim, S. M., Hossain, S. S., & Siddique, I. M. (2024). Instantaneous Classification and Localization of Eye Diseases via Artificial Intelligence. European Journal of Advances in Engineering and Technology, 11(3), 45-53.
  31. Mondal, M. R. H., Bharati, S., Podder, P., & Podder, P. (2020). Data analytics for novel coronavirus disease. informatics in medicine unlocked, 20, 100374.
  32. N. Sarker, P. Podder, M. R. H. Mondal, S. S. Shafin and J. Kamruzzaman, "Applications of Machine Learning and Deep Learning in Antenna Design, Optimization, and Selection: A Review," in IEEE Access, vol. 11, pp. 103890-103915, 2023, doi: 10.1109/ACCESS.2023.3317371
  33. Mohammad Fokhrul Islam Buian, Ramisha Anan Arde, Md Masum Billah , Amit Debnath and Iqtiar Md Siddique, “Advanced analytics for predicting traffic collision severity assessment”, World Journal of Advanced Research and Reviews, 2024, 21(02), 2007–2018
Index Terms

Computer Science
Information Sciences

Keywords

Additive manufacturing Correlation Linear Regression Multiple Logistic Regression Decision Tree.