CFP last date
20 December 2024
Reseach Article

Comparison of Machine Learning Algorithms for Household’s Economic Status Classification

by Neneng Nur Sholihah, Arief Hermawan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 185 - Number 50
Year of Publication: 2023
Authors: Neneng Nur Sholihah, Arief Hermawan
10.5120/ijca2023923334

Neneng Nur Sholihah, Arief Hermawan . Comparison of Machine Learning Algorithms for Household’s Economic Status Classification. International Journal of Computer Applications. 185, 50 ( Dec 2023), 6-13. DOI=10.5120/ijca2023923334

@article{ 10.5120/ijca2023923334,
author = { Neneng Nur Sholihah, Arief Hermawan },
title = { Comparison of Machine Learning Algorithms for Household’s Economic Status Classification },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2023 },
volume = { 185 },
number = { 50 },
month = { Dec },
year = { 2023 },
issn = { 0975-8887 },
pages = { 6-13 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume185/number50/33028-2023923334/ },
doi = { 10.5120/ijca2023923334 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:29:17.453437+05:30
%A Neneng Nur Sholihah
%A Arief Hermawan
%T Comparison of Machine Learning Algorithms for Household’s Economic Status Classification
%J International Journal of Computer Applications
%@ 0975-8887
%V 185
%N 50
%P 6-13
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This research addresses the global commitment to eradicate poverty as outlined in the United Nations' Sustainable Development Goals (SDGs) for 2015-2030. Poverty is a multifaceted issue encompassing income levels, resource availability, education accessibility, hunger, malnutrition, social injustice, and limited access to basic needs. Traditional poverty assessments relying on surveys present challenges in terms of cost, time, and outdatedness. To overcome these challenges, this study leverages machine learning algorithms to classify household economic status. This research compares Random Forest, SVM, Naïve Bayes, and ANN algorithms. The results show that the Random Forest algorithm consistently outperforms others, achieving the highest AUROC values. The classification evaluation results indicate that Random Forest performs the best classification with 93% accuracy. These findings contribute valuable insights for policymakers and development practitioners, enhancing the precision and efficiency of poverty reduction initiatives to align with the UN's goal of a poverty-free world by 2030.

References
  1. United Nations, “Sustainable Development Goals.” Accessed: Nov. 13, 2023. [Online]. Available: https://www.un.org/sustainabledevelopment/
  2. P. P. Min, Y. W. Gan, S. N. B. Hamzah, T. S. Ong, and M. S. Sayeed, “Poverty prediction using machine learning approach,” Journal of Southwest Jiaotong University, vol. 57, no. 1, 2022.
  3. United Nations, “Poverty – Social Policy and Development Division | DISD.” Accessed: Nov. 14, 2023. [Online]. Available: https://www.un.org/development/desa/dspd/poverty-social-policy-and-development-division.html
  4. The International Society of Gynecological Endocrinology (ISGE), “List of developing countries | ISGE 2018.” Accessed: Jul. 08, 2023. [Online]. Available: https://isge2018.isgesociety.com/registration/list-of-developing-countries/
  5. D. Seftiana, O. D. Arleina, S. Dewi, R. Amalia, and F. Fachrunisah, “Klasifikasi Rumah Tangga Miskin di Kabupaten Jombang dengan Pendekatan Random Forest Cart,” in Pekan Ilmiah Mahasiswa Nasional Program Kreativitas Mahasiswa-Penelitian 2014, Indonesian Ministry of Research, Technology and Higher Education, 2014.
  6. V. Houlden, G.-M. Tsarouchi, and N. Walmsley, “The Impact of Climate Change on the Achievement of the Post 2015 Sustainable Development Goals,” in Climate and Development Knowledge Network, South Africa: Climate and Development Knowledge Network (CDKN), 2015.
  7. S. Hu, Y. Ge, M. Liu, Z. Ren, and X. Zhang, “Village-level poverty identification using machine learning, high-resolution images, and geospatial data,” International Journal of Applied Earth Observation and Geoinformation, vol. 107, p. 102694, 2022, doi: https://doi.org/10.1016/j.jag.2022.102694.
  8. A. Coudouel, J. S. Hentschel, and Q. T. Wodon, “Poverty measurement and analysis,” A Sourcebook for poverty reduction strategies, vol. 1, pp. 27–74, 2002.
  9. S. Carvalho and H. White, Combining the quantitative and qualitative approaches to poverty measurement and analysis: the practice and the potential, vol. 23. World Bank Publications, 1997.
  10. A. Alsharkawi, M. Al-Fetyani, M. Dawas, H. Saadeh, and M. Alyaman, “Poverty classification using machine learning: The case of Jordan,” Sustainability (Switzerland), vol. 13, no. 3, pp. 1–16, Feb. 2021, doi: 10.3390/su13031412.
  11. N. S. Sani, M. A. Rahman, A. A. Bakar, S. Sahran, and H. M. Sarim, “Machine learning approach for Bottom 40 Percent Households (B40) poverty classification,” Int J Adv Sci Eng Inf Technol, vol. 8, no. 4–2, pp. 1698–1705, 2018, doi: 10.18517/ijaseit.8.4-2.6829.
  12. H. Zixi, “Poverty Prediction Through Machine Learning,” in 2021 2nd International Conference on E-Commerce and Internet Technology (ECIT), 2021, pp. 314–324. doi: 10.1109/ECIT52743.2021.00073.
  13. M. T. Majeed and M. N. Malik, “Determinants of Household Poverty: Empirical Evidence from Pakistan,” The Pakistan Development Review, vol. 54, no. 4, pp. 701–717, 2015, [Online]. Available: http://www.jstor.org/stable/43831356
  14. A. Sączewska-Piotrowska, “Determinants of the state of poverty using logistic regression,” Śląski Przegląd Statystyczny, vol. 16, pp. 55–68, Jan. 2018, doi: 10.15611/sps.2018.16.04.
  15. L. B. Adzy, A. Asriyanik, and A. Pambudi, “Algoritma Naïve Bayes untuk Klasifikasi Kelayakan Penerima Bantuan Iuran Jaminan Kesehatan Pemerintah Daerah Kabupaten Sukabumi,” Jurnal Mnemonic, vol. 6, no. 1, pp. 1–10, May 2023, doi: https://doi.org/10.36040/mnemonic.v6i1.5714.
  16. O. Somantri, W. E. Nugroho, and A. R. Supriyono, “Penerapan Feature Selection pada Algoritma Decision Tree untuk Menentukan Pola Rekomendasi Dini Konseling,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, pp. 272–279, Dec. 2022, doi: http://dx.doi.org/10.30865/json.v4i2.5267.
  17. M. Mustaqim, B. Warsito, and B. Surarso, “Combination of synthetic minority oversampling technique (Smote) and backpropagation neural network to handle imbalanced class in predicting the use of contraceptive implants,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 5, no. 2, pp. 116–127, Jul. 2019, doi: 10.26594/register.v5i2.1705.
  18. L. Qadrini, H. Hikmah, and M. Megasari, “Oversampling, Undersampling, SMOTE SVM dan Random Forest pada Klasifikasi Penerima Bidikmisi Sejawa Timur Tahun 2017,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, pp. 386–391, Sep. 2022, doi: https://doi.org/10.47065/josyc.v3i4.2154.
  19. M. L. Suliztia, “Penerapan Analisis Random Forest pada Prototype Sistem Prediksi Harga Kamera Bekas Menggunakan Flask,” Skripsi, Universitas Islam Indonesia, Yogyakarta, 2020.
  20. A. Primajaya and B. N. Sari, “Random Forest Algorithm for Prediction of Precipitation,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 1, no. 1, pp. 27–31, 2018, doi: http://dx.doi.org/10.24014/ijaidm.v1i1.4903.
  21. D. Ismafillah, T. Rohana, and Y. Cahyana, “Analisis Algoritma Pohon Keputusan untuk Memprediksi Penyakit Diabetes Menggunakan Oversampling SMOTE,” INFOTECH: Jurnal Informatika & Teknologi, vol. 4, no. 1, pp. 27–36, Jun. 2023, doi: https://doi.org/10.37373/infotech.v4i1.452.
  22. M. W. B. Santoso, R. C. Wihandika, and M. A. Rahman, “Ekstraksi Ciri untuk Klasifikasi Jenis Kelamin berbasis Citra Wajah menggunakan Metode Compass Local Binary Patterns,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 11, pp. 10556–10563, Jan. 2019.
  23. F. Hamami and A. Dahlan, “KLASIFIKASI CUACA PROVINSI DKI JAKARTA MENGGUNAKAN ALGORITMA RANDOM FOREST DENGAN TEKNIK OVERSAMPLING,” 2022.
  24. J. Widiastuti, “Klasifikasi Pembiayaan Warung Mikro Menggunakan Metode Random Forest dengan Teknik Sampling Kelas Imbalanced (Studi Kasus: Data Nasabah Pembiayaan Warung Mikro Bank Syariah Mandiri KC Jambi),” Tugas Akhir, Universitas Islam Indonesia, Yogyakarta, 2018.
  25. R. G. Gallager, “Claude E. Shannon: a retrospective on his life, work, and impact,” IEEE Trans Inf Theory, vol. 47, no. 7, pp. 2681–2695, 2001, doi: 10.1109/18.959253.
  26. M. Awad, R. Khanna, M. Awad, and R. Khanna, “Support vector machines for classification,” Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, pp. 39–66, 2015.
  27. M. Achirul Nanda, K. Boro Seminar, D. Nandika, and A. Maddu, “A comparison study of kernel functions in the support vector machine and its application for termite detection,” Information, vol. 9, no. 1, p. 5, 2018.
  28. M. J. Al_Dujaili, H. T. H. Salim ALRikabi, and I. R. Niama ALRubeei, “Gender Recognition of Human from Face Images Using Multi-Class Support Vector Machine (SVM) Classifiers.,” International Journal of Interactive Mobile Technologies, vol. 17, no. 8, 2023.
  29. S. Chen, G. I. Webb, L. Liu, and X. Ma, “A novel selective naïve Bayes algorithm,” Knowl Based Syst, vol. 192, p. 105361, 2020.
  30. D. Berrar, “Bayes’ theorem and naive Bayes classifier,” Encyclopedia of bioinformatics and computational biology: ABC of bioinformatics, vol. 403, p. 412, 2018.
  31. J. J. Hopfield, “Artificial neural networks,” IEEE Circuits and Devices Magazine, vol. 4, no. 5, pp. 3–10, 1988, doi: 10.1109/101.8118.
  32. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986, doi: 10.1038/323533a0.
Index Terms

Computer Science
Information Sciences

Keywords

Comparison Classification Household Economic Status Machine Learning Algorithms.