CFP last date
20 December 2024
Reseach Article

Pythagorean Fuzzy Semi-Prime Ideals of Ordered Semi-Groups

by Amal Kumar Adak, Gaurikant Kumar, Monoranjan Bhowmik
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 185 - Number 5
Year of Publication: 2023
Authors: Amal Kumar Adak, Gaurikant Kumar, Monoranjan Bhowmik
10.5120/ijca2023922661

Amal Kumar Adak, Gaurikant Kumar, Monoranjan Bhowmik . Pythagorean Fuzzy Semi-Prime Ideals of Ordered Semi-Groups. International Journal of Computer Applications. 185, 5 ( Apr 2023), 4-10. DOI=10.5120/ijca2023922661

@article{ 10.5120/ijca2023922661,
author = { Amal Kumar Adak, Gaurikant Kumar, Monoranjan Bhowmik },
title = { Pythagorean Fuzzy Semi-Prime Ideals of Ordered Semi-Groups },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2023 },
volume = { 185 },
number = { 5 },
month = { Apr },
year = { 2023 },
issn = { 0975-8887 },
pages = { 4-10 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume185/number5/32699-2023922661/ },
doi = { 10.5120/ijca2023922661 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:25:19.779696+05:30
%A Amal Kumar Adak
%A Gaurikant Kumar
%A Monoranjan Bhowmik
%T Pythagorean Fuzzy Semi-Prime Ideals of Ordered Semi-Groups
%J International Journal of Computer Applications
%@ 0975-8887
%V 185
%N 5
%P 4-10
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Pythagorean fuzzy sets are expanded to include intuitionistic fuzzy sets, with the extra advantage of avoiding underlying limitations. Pythagorean fuzzy standards are defined in the literature using the concepts of Pythagorean fuzzy sets. The concepts of ordered semigroup semi-prime ideals and Pythagorean fuzzy prime aspirations are explained. Also illustrate how to construct Pythagorean fuzzy regular and intra-regular ideals using Pythagorean fuzzy regular and intra-regular ideals. Using the conception of the characteristic function of a non-empty subset of ordered semigroups, investigate certain fundamental facts. Several relations are given for the family of Pythagorean fuzzy ideals of ordered semigroups.

References
  1. A. K. Adak, M. Bhowmik and M. Pal, Interval cut-set of generalized interval-valued intuitionistic fuzzy sets, International Journal of Fuzzy System Applications, 2 (3) (2012) 35-50.
  2. A. K. Adak, M. Bhowmik and M. Pal, Distributive Lattice over Intuitionistic Fuzzy Matrices, The Journal of Fuzzy Mathematics, 21(2) (2013) 401-416.
  3. D. Manna and A. K. Adak, Interval-valued Intuitionistic Fuzzy R-subgroup of Near-rings, Journal of fuzzy mathematics, 24(4) (2016) 985-994.
  4. A. K. Adak, D. D. Salokolaei, Some properties of Pythagorean fuzzy ideal of near-rings, International Journal of Applied Operational Research , 9(3) (2019) 1-9.
  5. A. K. Adak, Interval-Valued Intuitionistic Fuzzy Subnear Rings, Handbook of Research on Emerging Applications of Fuzzy Algebraic Structures IGI-Global, (2020) 213-224.
  6. A. K. Adak, D. D. Salokolaei, Some Properties Rough Pythagorean Fuzzy Sets, Fuzzy Information and Engineering (IEEE) , 13(4) (2021) 420-435.
  7. A. K. Adak, Characterization of Pythagorean Q-Fuzzy Ideal of Near-Ring, Handbook of Research on Advances and Applications of Fuzzy Sets and Logic IGI-Global, (2022) 229-242.
  8. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
  9. R. Biswas, Fuzzy subgroups and anti-fuzzy subroups, Fuzzy Sets and Sys, vol 35(1) (1990) 121-124.
  10. H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. Int J Intell Syst. 31(9) (2016) 886-920.
  11. H. Garg, Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-norm and t-conorm for multicriteria decision-making process. Int J Intell Syst. 32(6) (2017) 597-630.
  12. Y. B. Jun, K. H. Kim, Y. H. Yon, Intuitionistic fuzzy ideals of near-rings, J. Inst. Math. Comp. Sci. 12 (3) (1999) 221-228.
  13. K. H. Kim and Y. B. Jun, Intuitionistic fuzzy ideals of semigroups, Indian J. Pure Appl. Math. 33(4) (2002) 443-449.
  14. K. H. Kim and Y.B. Jun, Intuitionistic fuzzy interior ideals of semigroups, Int. J. Math. Math. Sci. 27 (5) (2001) 261-267.
  15. K. H. Kim and J. G. Lee, On fuzzy bi-ideals of semigroups, Turk. J. Math. 29 (2005) 201–210.
  16. S. P. Kuncham, S. Bhavanari, Fuzzy prime ideal of a gamma near ring. Soochow Journal of Mathematics 31 (1) (2005) 121-129.
  17. N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5 (1981), 203-215.
  18. N. Kuroki, Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems 8 (1982), 71-79.
  19. N. K. Saha, On -semigroup II, Bull. Calcutta Math. Soc. 79(6) (1987) 331–335.
  20. N. K. Saha, On -semigroup III, ull. Calcutta Math. Soc. 80(1) (1988) 1-13.
  21. S. K. Sardar, S. K. Majumder and M. Mandal, Atanassov’s intuitionistic fuzzy ideals of -semigroups, Int. J. Algebra 5(7) (2011) 335-353.
  22. M. K. Sen and N. K. Saha, On -semigroup I, Bull. Calcutta Math. Soc. 78(3) (1986) 180–186
  23. R. R. Yager, Abbasov AM. Pythagorean membeship grades, complex numbers and decision making. Int J Intell Syst 28 (2013) 436-452.
  24. R. R. Yager, Pythagorean fuzzy subsets. In: Proc Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, (2013) 57-61.
  25. R. R. Yager, Pythagorean membership grades in multicriteria decision making. IEEE Transaction on Fuzzy Systems 22 (2014) 958-965.
  26. X. Yun Xie, F. Yan, Fuzzy ideal extension of ordered semigroups, Lobach. J. Math. 19 (2005), 29-40.
  27. L. A. Zadeh, Fuzzy sets, Information and Control, 8(1965) 338-353.
Index Terms

Computer Science
Information Sciences

Keywords

Intuitionistic fuzzy set Pythagorean fuzzy set Pythagorean fuzzy ideals Pythagorean fuzzy semi-prime ideals Pythagorean fuzzy regular ideals. 2010 AMS Classification: 16Y30 03E72 16Y99.