CFP last date
20 December 2024
Reseach Article

Personalized Student Learning Mechanisms using K-Means and K-Medoids Clustering Algorithms based on Individual Preferences

by Rendy Wenda Dwi Kurniawan, Arief Hermawan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 185 - Number 46
Year of Publication: 2023
Authors: Rendy Wenda Dwi Kurniawan, Arief Hermawan
10.5120/ijca2023923274

Rendy Wenda Dwi Kurniawan, Arief Hermawan . Personalized Student Learning Mechanisms using K-Means and K-Medoids Clustering Algorithms based on Individual Preferences. International Journal of Computer Applications. 185, 46 ( Nov 2023), 13-19. DOI=10.5120/ijca2023923274

@article{ 10.5120/ijca2023923274,
author = { Rendy Wenda Dwi Kurniawan, Arief Hermawan },
title = { Personalized Student Learning Mechanisms using K-Means and K-Medoids Clustering Algorithms based on Individual Preferences },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2023 },
volume = { 185 },
number = { 46 },
month = { Nov },
year = { 2023 },
issn = { 0975-8887 },
pages = { 13-19 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume185/number46/32999-2023923274/ },
doi = { 10.5120/ijca2023923274 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:28:47.130289+05:30
%A Rendy Wenda Dwi Kurniawan
%A Arief Hermawan
%T Personalized Student Learning Mechanisms using K-Means and K-Medoids Clustering Algorithms based on Individual Preferences
%J International Journal of Computer Applications
%@ 0975-8887
%V 185
%N 46
%P 13-19
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This research aims to minimize the mismatch between competencies and career interests, a common issue faced by students who often find themselves in the wrong field of study or working in jobs unrelated to their educational background. Determining an effective and efficient learning mechanism through precise student clustering to form optimal learning groups is an effort that can be made to better align with the individual preferences of each student. However, the process of clustering high school students encounters challenges such as resource constraints, time limitations, and the need for effective outcomes. Therefore, this research explores a solution by implementing a clustering process for high school students based on individual preferences, including subject interests, career aspirations, and preferred learning methods, using the K-Means and K-Medoids algorithms. Performance analysis of both algorithms reveals that K-Means outperforms in handling student preference data, resulting in an optimal number of clusters of 6. The model evaluation results indicate a Silhouette Coefficient of 0.786 for K-Means and a Davies-Bouldin Index of 0.334.

References
  1. Gumanti Awaliyah and Dwi Murdaningsih, “87 Persen Mahasiswa Mengaku Salah Pilih Jurusan,” Republika. [Online]. Available: https://republika.co.id/berita/pmjuhw368/87-persen-mahasiswa-mengaku-salah-pilih-jurusan
  2. Lalu Rahadian, “Skill Tak Sesuai Suplai Tenaga Kerja Tak Terserap,” Bisnis.com. [Online]. Available: https://ekonomi.bisnis.com/read/20190316/12/900380/skill-tak-sesuai-suplai-tenaga-kerja-tak-terserap
  3. Novia Aisyah, “Nadiem Ungkap 80% Lulusan Tak Bekerja Sesuai Prodi, Bagaimana Sisanya?,” detikEdu. [Online]. Available: https://www.detik.com/edu/perguruan-tinggi/d-5793585/nadiem-ungkap-80-lulusan-tak-bekerja-sesuai-prodi-bagaimana-sisanya
  4. A. Moubayed, M. Injadat, A. Shami, and H. Lutfiyya, “Student Engagement Level in an e-Learning Environment: Clustering Using K-means,” American Journal of Distance Education, vol. 34, no. 2, pp. 137–156, Apr. 2020, doi: 10.1080/08923647.2020.1696140.
  5. J. Hutagalung, Y. Hendro Syahputra, Z. Pertiwi Tanjung, S. Triguna Dharma, and J. I. Pintu Air, “Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering,” Hal AH Nasution, vol. 9, no. 1, 2022, [Online]. Available: http://jurnal.mdp.ac.id
  6. N. Saurina, L. Retnawati, F. H. Sukma Pratama, and U. Pudjianto, “Pengelompokan Seleksi Siswa Baru di Lembaga Pendidikan Non Formal Kabupaten Gresik Menggunakan Clustering K-Medoids,” Jurnal Sains dan Informatika, pp. 36–45, Jun. 2023, doi: 10.34128/jsi.v9i1.527.
  7. V. R. Reddy, D. Yakobu, S. Shiva Prasad, and P. A. Harsha Vardhini, “Clustering Student Learners based on performance using K-Means Algorithm,” in 2022 International Mobile and Embedded Technology Conference, MECON 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 302–306. doi: 10.1109/MECON53876.2022.9752165.
  8. N. Hidayat, R. Wardoyo, U. Gadjah Mada, I. S. Azhari, and H. Dwi Surjono, “Enhanced Performance of the Automatic Learning Style Detection Model using a Combination of Modified K-Means Algorithm and Naive Bayesian,” 2020. [Online]. Available: www.ijacsa.thesai.org
  9. Z. M. Ali, N. H. Hassoon, W. S. Ahmed, and H. N. Abed, “The Application of Data Mining for Predicting Academic Performance Using K-means Clustering and Naïve Bayes Classification,” International Journal of Psychosocial Rehabilitation, vol. 24, no. 03, pp. 2143–2151, Feb. 2020, doi: 10.37200/ijpr/v24i3/pr200962.
  10. S. Saket and S. Pandya, “Implementation of Extended K-Medoids Algorithm to Increase Efficiency and Scalability using Large Datasets,” 2016.
  11. C. Oktarina, K. Anwar Notodiputro, and ‡ Indahwati, “COMPARISON OF K-MEANS CLUSTERING METHOD AND K-MEDOIDS ON TWITTER DATA *,” 2020.
  12. N. Qona’ah, A. Rachma Devi, I. Made, and G. M. Dana, “Laboratory Clustering using K-Means, K-Medoids, and Model-Based Clustering,” 2020.
  13. R. Nainggolan, R. Perangin-Angin, E. Simarmata, and A. F. Tarigan, “Improved the Performance of the K-Means Cluster Using the Sum of Squared Error (SSE) optimized by using the Elbow Method,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Dec. 2019. doi: 10.1088/1742-6596/1361/1/012015.
  14. M. Cui, “Introduction to the K-Means Clustering Algorithm Based on the Elbow Method”, doi: 10.23977/accaf.2020.010102.
  15. D. T. Dinh, T. Fujinami, and V. N. Huynh, “Estimating the Optimal Number of Clusters in Categorical Data Clustering by Silhouette Coefficient,” in Communications in Computer and Information Science, Springer Science and Business Media Deutschland GmbH, 2019, pp. 1–17. doi: 10.1007/978-981-15-1209-4_1.
  16. H. B. Tambunan, D. H. Barus, J. Hartono, A. S. Alam, D. A. Nugraha, and H. H. H. Usman, “Electrical peak load clustering analysis using K-means algorithm and silhouette coefficient,” in Proceeding - 2nd International Conference on Technology and Policy in Electric Power and Energy, ICT-PEP 2020, Institute of Electrical and Electronics Engineers Inc., Sep. 2020, pp. 258–262. doi: 10.1109/ICT-PEP50916.2020.9249773.
  17. B. Jumadi Dehotman Sitompul, O. Salim Sitompul, and P. Sihombing, “Enhancement Clustering Evaluation Result of Davies-Bouldin Index with Determining Initial Centroid of K-Means Algorithm,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jul. 2019. doi: 10.1088/1742-6596/1235/1/012015.
  18. H. Santoso and H. Magdalena, “Improved K-Means Algorithm on Home Industry Data Clustering in the Province of Bangka Belitung,” in Proceeding - ICoSTA 2020: 2020 International Conference on Smart Technology and Applications: Empowering Industrial IoT by Implementing Green Technology for Sustainable Development, Institute of Electrical and Electronics Engineers Inc., Feb. 2020. doi: 10.1109/ICoSTA48221.2020.1570598913.
Index Terms

Computer Science
Information Sciences

Keywords

Clustering K-Means K-Medoids Learning Mechanisms Individual Preferences.