CFP last date
20 December 2024
Reseach Article

Automatic Attendance Registration System using Convolutional Neural Networks for Facial Recognition

by Cristian H Sánchez Saquín, Gabriel Rodríguez Feregrino, Alejandro Gómez Hernández
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 185 - Number 43
Year of Publication: 2023
Authors: Cristian H Sánchez Saquín, Gabriel Rodríguez Feregrino, Alejandro Gómez Hernández
10.5120/ijca2023923241

Cristian H Sánchez Saquín, Gabriel Rodríguez Feregrino, Alejandro Gómez Hernández . Automatic Attendance Registration System using Convolutional Neural Networks for Facial Recognition. International Journal of Computer Applications. 185, 43 ( Nov 2023), 28-35. DOI=10.5120/ijca2023923241

@article{ 10.5120/ijca2023923241,
author = { Cristian H Sánchez Saquín, Gabriel Rodríguez Feregrino, Alejandro Gómez Hernández },
title = { Automatic Attendance Registration System using Convolutional Neural Networks for Facial Recognition },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2023 },
volume = { 185 },
number = { 43 },
month = { Nov },
year = { 2023 },
issn = { 0975-8887 },
pages = { 28-35 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume185/number43/32977-2023923241/ },
doi = { 10.5120/ijca2023923241 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:28:32.539823+05:30
%A Cristian H Sánchez Saquín
%A Gabriel Rodríguez Feregrino
%A Alejandro Gómez Hernández
%T Automatic Attendance Registration System using Convolutional Neural Networks for Facial Recognition
%J International Journal of Computer Applications
%@ 0975-8887
%V 185
%N 43
%P 28-35
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A system has been developed to optimize the attendance taking process in a school using computer vision and artificial intelligence techniques. The traditional method of keeping attendance records using a printed list is time-consuming and prone to errors. To address this issue, a system was implemented using neural networks, specifically YOLOv5 and VGGFace, for face detection and recognition of students in a group at the Technological University of Querétaro. The system operates autonomously throughout the entire class duration, utilizing the Intel RealSense SR300 camera as the video source for capturing images. These images were then labeled using the CVAT software and used to train the neural networks in Google Colab. A Python-based implementation was employed, combining the results of the two neural networks using a voting approach to achieve more accurate identification and recognition of each student. The obtained results, including the recognized students, are sent to the specified email address in the CSV file containing the class schedule, as well as to the email of the responsible teacher. By leveraging artificial intelligence and computer vision, this solution aims to streamline and enhance the attendance taking process in the school. It reduces the time dedicated to this task and minimizes errors associated with the traditional method of using a printed attendance list.

References
  1. Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012, Yonghye Kwon, Kalen Michael, TaoXie, Jiacong Fang, imyhxy, Lorna, 曾逸夫(Zeng Yifu), Colin Wong, Abhiram V, Diego Montes, Zhiqiang Wang, Cristi Fati, Jebastin Nadar, Laughing, … Mrinal Jain. (2022). ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime InstanceSegmentation (v7.0). Zenodo. https://doi.org/10.5281/ zenodo.7347926.
  2. Parkhi, O., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. BMVC 2015 - Proceedings of the British Machine Vision Conference 2015, 1–12.
  3. K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.
  4. Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi. “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning”, 23 February 2016. https://doi.org/10.48550/ arXiv.1602.07261.
  5. Karen Simonyan, Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition”, 4 September 2014 https://doi.org/10.48550/arXiv.1409.1556.
  6. M. Sajid, R. Hussain and M. Usman, "A conceptual model for automated attendance marking system using facial recognition," Ninth International Conference on Digital Information Management (ICDIM 2014), Phitsanulok, Thailand, 2014, pp. 7-10, doi: 10.1109/ ICDIM.2014.6991407.
  7. T. A. Kiran, N. D. K. Reddy, A. I. Ninan, P. Krishnan, D. J. Aravindhar and A. Geetha, "PCA based Facial Recognition for Attendance System," 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2020, pp. 248-252, doi: 10.1109/ICOSEC49089.2020.9215326.
  8. J. W. S. D'Souza, S. Jothi and A. Chandrasekar, "Automated Attendance Marking and Management System by Facial Recognition Using Histogram," 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 2019, pp. 66-69, doi: 10.1109/ ICACCS.2019.8728399.
  9. Class Attendance Management System using Facial Recognition. Clyde Gomes, Sagar Chanchal, Tanmay Desai and Dipti Jadhav. ITM Web Conf., 32 (2020) 02001. DOI: https://doi.org/10.1051/itmconf/20203202001.
  10. A. R. S. Siswanto, A. S. Nugroho and M. Galinium, "Implementation of face recognition algorithm for biometrics based time attendance system," 2014 International Conference on ICT For Smart Society (ICISS), Bandung, Indonesia, 2014, pp. 149-154, doi: 10.1109/ICTSS.2014.7013165.
  11. Face recognition Attendance system using HOG and CNN algorithm. Aditya Kapse, Tejas Kamble, Ashutosh Lohar, Shubham Chaudhari and Digambar Puri. ITM Web Conf., 44 (2022) 03028. DOI: https:// doi.org/10.1051/itmconf/20224403028.
  12. E. Winarno, I. Husni Al Amin, H. Februariyanti, P. W. Adi, W. Hadikurniawati and M. T. Anwar, "Attendance System Based on Face Recognition System Using CNN-PCA Method and Real-time Camera," 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 2019, pp. 301-304, doi: 10.1109/ISRITI48646.2019.9034596.
  13. R. C. Damale and B. V. Pathak, "Face Recognition Based Attendance System Using Machine Learning Algorithms," 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2018, pp. 414-419, doi: 10.1109/ICCONS.2018.8662938.
  14. Intelligent Attendance System with Face Recognition using the Deep Convolutional Neural Network Method. Nurkhamid, Pradana Setialana, Handaru Jati, Ratna Wardani, Yuniar Indrihapsari and Norita Md Norwawi. Journal of Physics: Conference Series,Volume 1737, 3rd International Conference on Electrical, Electronics, Informatics, and Vocational Education 5 October 2020, City, Indonesia.
  15. Khan, S, Akram, A. & Usman, N. Real Time Automatic Attendance System for Face Recognition Using Face API and OpenCV. Wireless Pers Commun 113, 469–480 (2020). https://doi.org/10.1007/ s11277-020-07224-2.
  16. Q. Cao, L. Shen, W. Xie, O. M. Parkhi and A. Zisserman, "VGGFace2: A Dataset for Recognizing Faces across Pose and Age," 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi'an, China, 2018, pp. 67-74, doi: 10.1109/FG.2018.00020.
  17. Ijraset. (s. f.). Online Classroom Attendance Marking System Using Face Recognition, Python, Computer Vision, and Digital Image Processing. IJRASET. https://www.ijraset.com/research-paper/onlineclassroom-attendance-marking-system-using-facerecognition.
  18. S. Lukas, A. R. Mitra, R. I. Desanti and D. Krisnadi, "Student attendance system in classroom using face recognition technique," 2016 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South), 2016, pp. 1032-1035, doi: 10.1109/ICTC.2016.7763360.
  19. Hugo, D. R. V. (2016, 9 diciembre). Sistema de reconocimiento facial utilizando filtros de correlación. http://tesis.ipn.mx/handle/123456789/20333.
  20. Padilla Cando, A. L., & Sánchez Pilay, J. Y. (2013-12). Sistema de reconocimiento facial utilizando filtros de correlación. Recuperado a partir de http://repositorio.ug.edu.ec/handle/redug/48932.
Index Terms

Computer Science
Information Sciences

Keywords

face recognition convolutional neuronal networks face identification YOLOv5 VGGFace.