CFP last date
20 December 2024
Reseach Article

The Significance of Machine Learning in Clinical Disease Diagnosis: A Review

by SM Atikur Rahman, Sifat Ibtisum, Ehsan Bazgir, Tumpa Barai
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 185 - Number 36
Year of Publication: 2023
Authors: SM Atikur Rahman, Sifat Ibtisum, Ehsan Bazgir, Tumpa Barai
10.5120/ijca2023923147

SM Atikur Rahman, Sifat Ibtisum, Ehsan Bazgir, Tumpa Barai . The Significance of Machine Learning in Clinical Disease Diagnosis: A Review. International Journal of Computer Applications. 185, 36 ( Oct 2023), 10-17. DOI=10.5120/ijca2023923147

@article{ 10.5120/ijca2023923147,
author = { SM Atikur Rahman, Sifat Ibtisum, Ehsan Bazgir, Tumpa Barai },
title = { The Significance of Machine Learning in Clinical Disease Diagnosis: A Review },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2023 },
volume = { 185 },
number = { 36 },
month = { Oct },
year = { 2023 },
issn = { 0975-8887 },
pages = { 10-17 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume185/number36/32921-2023923147/ },
doi = { 10.5120/ijca2023923147 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:27:55.066547+05:30
%A SM Atikur Rahman
%A Sifat Ibtisum
%A Ehsan Bazgir
%A Tumpa Barai
%T The Significance of Machine Learning in Clinical Disease Diagnosis: A Review
%J International Journal of Computer Applications
%@ 0975-8887
%V 185
%N 36
%P 10-17
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The global need for effective disease diagnosis remains substantial, given the complexities of various disease mechanisms and diverse patient symptoms. To tackle these challenges, researchers, physicians, and patients are turning to machine learning (ML), an artificial intelligence (AI) discipline, to develop solutions. By leveraging sophisticated ML and AI methods, healthcare stakeholders gain enhanced diagnostic and treatment capabilities. However, there is a scarcity of research focused on ML algorithms for enhancing the accuracy and computational efficiency. This research investigates the capacity of machine learning algorithms to improve the transmission of heart rate data in time series healthcare metrics, concentrating particularly on optimizing accuracy and efficiency. By exploring various ML algorithms used in healthcare applications, the review presents the latest trends and approaches in ML-based disease diagnosis (MLBDD). The factors under consideration include the algorithm utilized, the types of diseases targeted, the data types employed, the applications, and the evaluation metrics. This review aims to shed light on the prospects of ML in healthcare, particularly in disease diagnosis. By analyzing the current literature, the study provides insights into state-of-the-art methodologies and their performance metrics.

References
  1. McPhee, S.J.; Papadakis, M.A.; Rabow, M.W. (Eds.) Current Medical Diagnosis & Treatment; McGraw-Hill Medical: New York, NY, USA, 2010.
  2. Ahsan, M.M.; Ahad, M.T.; Soma, F.A.; Paul, S.; Chowdhury, A.; Luna, S.A.; Yazdan, M.M.S.; Rahman, A.; Siddique, Z.; Huebner, P. Detecting SARS-CoV-2 From Chest X-ray Using Artificial Intelligence. IEEE Access 2021, 9, 35501–35513.
  3. Coon, E.R.; Quinonez, R.A.; Moyer, V.A.; Schroeder, A.R. Overdiagnosis: How our compulsion for diagnosis may be harming children. Pediatrics 2014, 134, 1013–1023.
  4. Balogh, E.P.; Miller, B.T.; Ball, J.R. Improving Diagnosis in Health Care; National Academic Press: Washington, DC, USA, 2015.
  5. Ahsan, M.M.; Siddique, Z. Machine Learning-Based Heart Disease Diagnosis: A Systematic Literature Review. arXiv 2021, arXiv:2112.06459
  6. Dhillon, A.; Singh, A. Machine learning in healthcare data analysis: A survey. J. Biol. Today World 2019, 8, 1–10. [Google Scholar]
  7. Sinha, U.; Singh, A.; Sharma, D.K. Machine learning in the medical industry. In Handbook of Research on Emerging Trends and Applications of Machine Learning; IGI Global: Hershey, PA, USA, 2020; pp. 403–424.
  8. Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.D. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016, 4, 23–45.
  9. Chen, M.; Hao, Y.; Hwang, K.; Wang, L.; Wang, L. Disease prediction by machine learning over big data from healthcare communities. IEEE Access 2017, 5, 8869–8879.
  10. Ngiam, K.Y.; Khor, W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019, 20, e262–e273.
  11. Garg, A.; Mago, V. Role of machine learning in medical research: A survey. Comput. Sci. Rev. 2021, 40, 100370.
  12. Yan, Z.; Zhan, Y.; Peng, Z.; Liao, S.; Shinagawa, Y.; Zhang, S.; Metaxas, D.N.; Zhou, X.S. Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 2016, 35, 1332–1343.
  13. Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 2016, 35, 1207–1216.
  14. Schlemper, J.; Caballero, J.; Hajnal, J.V.; Price, A.; Rueckert, D. A deep cascade of convolutional neural networks for MR image reconstruction. In Proceedings of the Information Processing in Medical Imaging: 25th International Conference, IPMI 2017, Boone, NC, USA, 25–30 June 2017; Springer: Berlin/Heidelberg, Germany; pp. 647–658.
  15. Mehta, J.; Majumdar, A. Rodeo: Robust de-aliasing autoencoder for real-time medical image reconstruction. Pattern Recognit. 2017, 63, 499–510.
  16. Kamal, Tamanna, Fabiha Islam, and Mobasshira Zaman. "Designing a Warehouse with RFID and Firebase Based Android Application." Journal of Industrial Mechanics 4.1 (2019): 11-19.
  17. Parvez, Md Shohel, et al. "Anthropomorphic investigation into improved furniture fabrication and fitting for students in a Bangladeshi university." Journal of The Institution of Engineers (India): Series C 103.4 (2022): 613-622.
  18. Ibtisum, Sifat. "A Comparative Study on Different Big Data Tools." (2020).
  19. Parvez, M. S., et al. "Are library furniture dimensions appropriate for anthropometric measurements of university students?." Journal of Industrial and Production Engineering 39.5 (2022): 365-380.
  20. Hossain, Md Zakir, et al. "Evaluating the Effectiveness of a Portable Wind Generator that Produces Electricity using Wind Flow from Moving Vehicles." Journal of Industrial Mechanics 8.2 (2023): 44-53.
  21. Mondal, M. Rubaiyat Hossain, et al. "Data analytics for novel coronavirus disease." informatics in medicine unlocked 20 (2020): 100374.
  22. Fakoor R, Ladhak F, Nazi A, Huber M. Using deep learning to enhance cancer diagnosis and classification. A conference ¬presentation The 30th International Conference on Machine Learning, 2013.
  23. Vial A, Stirling D, Field M, et al. The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review. Transl Cancer Res 2018;7:803–16.
  24. Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2), 94.
  25. Nguyen, D. C., Pham, Q. V., Pathirana, P. N., Ding, M., Seneviratne, A., Lin, Z., ... & Hwang, W. J. (2022). Federated learning for smart healthcare: A survey. ACM Computing Surveys (CSUR), 55(3), 1-37.
  26. Bharati, S., Mondal, M. R. H., & Podder, P. (2023). A Review on Explainable Artificial Intelligence for Healthcare: Why, How, and When?. IEEE Transactions on Artificial Intelligence.
  27. Bharati, S., Mondal, M. R. H., Podder, P., & Kose, U. (2023). Explainable Artificial Intelligence (XAI) with IoHT for Smart Healthcare: A Review. Interpretable Cognitive Internet of Things for Healthcare, 1-24.
  28. Bharati, S., Mondal, M., Podder, P., & Prasath, V. B. (2022). Federated learning: Applications, challenges and future directions. International Journal of Hybrid Intelligent Systems, 18(1-2), 19-35.
  29. Bharati, S., Mondal, M. H., Khamparia, A., Mondal, R. H., Podder, P., Bhushan, B. et al. (2021). 12 Applications and challenges of AI-driven IoHT for combating pandemics: a review (pp. 213-230). Berlin, Boston: De Gruyter.
  30. Bharati, S., Podder, P., Mondal, M. R. H., & Paul, P. K. (2021). Applications and challenges of cloud integrated IoMT. Cognitive Internet of Medical Things for Smart Healthcare: Services and Applications, 67-85.
  31. Ryu, S.-E., Shin, D.-H., Chung, K.: Prediction model of dementia risk based on xgboost using derived variable extraction and hyper parameter optimization. IEEE Access 8, 177708–177720 (2020)
  32. Facal, D., Valladares-Rodriguez, S., Lojo-Seoane, C., Pereiro, A.X., Anido-Rifon, L., Juncos-Rabadán, O.: Machine learning approaches to studying the role of cognitive reserve in conversion from mild cognitive impairment to dementia. International journal of geriatric psychiatry 34(7), 941–949 (2019)
  33. Bharati, S., Podder, P., Thanh, D.N.H. et al. Dementia classification using MR imaging and clinical data with voting based machine learning models. Multimed Tools Appl 81, 25971–25992 (2022). https://doi.org/10.1007/s11042-022-12754-x
  34. Ansari, A.Q.; Gupta, N.K. Automated diagnosis of coronary heart disease using neuro-fuzzy integrated system. In Proceedings of the 2011 World Congress on Information and Communication Technologies, Mumbai, India, 11–14 December 2011; pp. 1379–1384.
  35. Ahsan, M.M.; Mahmud, M.; Saha, P.K.; Gupta, K.D.; Siddique, Z. Effect of data scaling methods on machine Learning algorithms and model performance. Technologies 2021, 9, 52.
  36. Rubin, J.; Abreu, R.; Ganguli, A.; Nelaturi, S.; Matei, I.; Sricharan, K. Recognizing abnormal heart sounds using deep learning. arXiv 2017, arXiv:1707.04642.
  37. Miao, J.H.; Miao, K.H. Cardiotocographic diagnosis of fetal health based on multiclass morphologic pattern predictions using deep learning classification. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 1–11.
  38. Nan Liu, Zhiping Lin, Jiuwen Cao, Zhixiong Koh, Tongtong Zhang, Guang-Bin Huang, Wee Ser, and Marcus Eng Hock Ong. An intelligent scoring system and its application to cardiac arrest prediction. IEEE Transactions on Information Technology in Biomedicine, 16(6):1324–1331, 2012.
  39. Devansh Shah, Samir Patel, and Santosh Kumar Bharti. Heart disease prediction using machine learning techniques. SN Computer Science, 1(6):1–6, 2020.
  40. Xuchu Wang, Suiqiang Zhai, and Yanmin Niu. Left ventricle landmark localization and identification in cardiac mri by deep metric learning-assisted cnn regression. Neurocomputing, 399:153–170, 2020.
  41. LD Sharma and RK Sunkaria. Myocardial infarction detection and localization using optimal features based lead specific approach. IRBM, 41(1):58–70, 2020.
  42. John Minou, John Mantas, Flora Malamateniou, and Daphne Kaitelidou. Classification techniques for cardiovascular diseases using supervised machine learning. Medical Archives, 74(1):39, 2020.
  43. Kemal Polat. Similarity-based attribute weighting methods via clustering algorithms in the classification of imbalanced medical datasets. Neural Computing and Applications, 30(3):987–1013, 2018.
  44. Konstantinos P Exarchos, Clara Carpegianni, Georgios Rigas, Themis P Exarchos, Federico Vozzi, Antonis Sakellarios, Paolo Marraccini, Katerina Naka, Lambros Michalis, Oberdan Parodi, et al. A multiscale approach for modeling atherosclerosis progression. IEEE journal of biomedical and health informatics, 19(2):709–719, 2014.
  45. Yilin Wang, Le Sun, and Sudha Subramani. Cab: Classifying arrhythmias based on imbalanced sensor data. KSII Transactions on Internet and Information Systems (TIIS), 15(7):2304–2320, 2021.
  46. Adyasha Rath, Debahuti Mishra, Ganapati Panda, and Suresh Chandra Satapathy. An exhaustive review of machine and deep learning based diagnosis of heart diseases. Multimedia Tools and Applications, pages 1–59, 2021.
  47. Riskyana Dewi Intan Puspitasari, M Anwar Ma’sum, Machmud R Alhamidi, Wisnu Jatmiko, et al. Generative adversarial networks for unbalanced fetal heart rate signal classification. ICT Express, 2021.
  48. Xiao, J.; Ding, R.; Xu, X.; Guan, H.; Feng, X.; Sun, T.; Zhu, S.; Ye, Z. Comparison and development of machine learning tools in the prediction of chronic kidney disease progression. J. Transl. Med. 2019, 17, 119.
  49. Ghosh, P.; Shamrat, F.J.M.; Shultana, S.; Afrin, S.; Anjum, A.A.; Khan, A.A. Optimization of prediction method of chronic kidney disease using machine learning algorithm. In Proceedings of the 2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP), Bangkok, Thailand, 18–20 November 2020; pp. 1–6.
  50. Ifraz, G.M.; Rashid, M.H.; Tazin, T.; Bourouis, S.; Khan, M.M. Comparative Analysis for Prediction of Kidney Disease Using Intelligent Machine Learning Methods. Comput. Math. Methods Med. 2021, 2021, 6141470.
  51. CKD Prediction Dataset. Available online: https://www.kaggle.com/datasets/abhia1999/chronic-kidney-disease (accessed on 27 June 2022).
  52. Islam, M.A.; Akter, S.; Hossen, M.S.; Keya, S.A.; Tisha, S.A.; Hossain, S. Risk factor prediction of chronic kidney disease based on machine learning algorithms. In Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 3–5 December 2020; pp. 952–957.
  53. Yashfi, S.Y.; Islam, M.A.; Sakib, N.; Islam, T.; Shahbaaz, M.; Pantho, S.S. Risk prediction of chronic kidney disease using machine learning algorithms. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–5.
  54. Chittora, P.; Chaurasia, S.; Chakrabarti, P.; Kumawat, G.; Chakrabarti, T.; Leonowicz, Z.; Jasiński, M.; Jasiński, Ł.; Gono, R.; Jasińska, E.; et al. Prediction of chronic kidney disease-a machine learning perspective. IEEE Access 2021, 9, 17312–17334.
  55. J. Xiao, R. Ding, X. Xu, H. Guan, X. Feng, T. Sun, S. Zhu, and Z. Ye, ‘‘Comparison and development of machine learning tools in the prediction of chronic kidney disease progression,’’ J. Transl. Med., vol. 17, p. 119, Dec. 2019.
  56. S. Drall, G. S. Drall, S. Singh, and B. B. Naib, ‘‘Chronic kidney disease prediction using machine learning: A new approach,’’ Int. J. Manage.,Technol. Eng., vol. 8, pp. 278–287, May 2018.
  57. Baidya, D.; Umaima, U.; Islam, M.N.; Shamrat, F.J.M.; Pramanik, A.; Rahman, M.S. A Deep Prediction of Chronic Kidney Disease by Employing Machine Learning Method. In Proceedings of the 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 28–30 April 2022; pp. 1305–1310.
  58. Izonin, I.; Tkachenko, R.; Dronyuk, I.; Tkachenko, P.; Gregus, M.; Rashkevych, M. Predictive modeling based on small data in clinical medicine: RBF-based additive input-doubling method. Math. Biosci. Eng. 2021, 18, 2599–2613.
  59. Izonin, I.; Tkachenko, R.; Fedushko, S.; Koziy, D.; Zub, K.; Vovk, O. RBF-Based Input Doubling Method for Small Medical Data Processing. In Proceedings of the International Conference on Artificial Intelligence and Logistics Engineering, Kyiv, Ukraine, 20–22 February 2022; Springer: Berlin/Heidelberg, Germany, 2021; pp. 23–31.
  60. Bhattacharya, D.; Banerjee, S.; Bhattacharya, S.; Uma Shankar, B.; Mitra, S. GAN-based novel approach for data augmentation with improved disease classification. In Advancement of Machine Intelligence in Interactive Medical Image Analysis; Springer: Berlin/Heidelberg, Germany, 2020; pp. 229–239.
  61. Dritsas, E.; Trigka, M. Machine Learning Techniques for Chronic Kidney Disease Risk Prediction. Big Data Cogn. Comput. 2022, 6, 98. https://doi.org/10.3390/bdcc6030098
  62. Chang, YH., Chung, CY. (2020). Classification of Breast Cancer Malignancy Using Machine Learning Mechanisms in TensorFlow and Keras. In: Lin, KP., Magjarevic, R., de Carvalho, P. (eds) Future Trends in Biomedical and Health Informatics and Cybersecurity in Medical Devices. ICBHI 2019. IFMBE Proceedings, vol 74. Springer, Cham.
  63. Z. A. El-Shair, L. A. Sánchez-Pérez and S. A. Rawashdeh, "Comparative Study of Machine Learning Algorithms using a Breast Cancer Dataset," 2020 IEEE International Conference on Electro Information Technology (EIT), Chicago, IL, USA, 2020, pp. 500-508, doi: 10.1109/EIT48999.2020.9208315.
  64. Islam, M.M., Haque, M.R., Iqbal, H. et al. Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques. SN COMPUT. SCI. 1, 290 (2020). https://doi.org/10.1007/s42979-020-00305-w
  65. Nemade, V., & Fegade, V. (2023). Machine Learning Techniques for Breast Cancer Prediction. Procedia Computer Science, 218, 1314-1320.
  66. E. A. Bayrak, P. Kırcı and T. Ensari, "Comparison of Machine Learning Methods for Breast Cancer Diagnosis," 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 2019, pp. 1-3, doi: 10.1109/EBBT.2019.8741990.
  67. M. Amrane, S. Oukid, I. Gagaoua and T. Ensarİ, "Breast cancer classification using machine learning," 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT), Istanbul, Turkey, 2018, pp. 1-4, doi: 10.1109/EBBT.2018.8391453.
Index Terms

Computer Science
Information Sciences

Keywords

Machine learning (ML) IoMT healthcare supervised learning chronic kidney disease (CKD) convolutional neural networks adaptive boosting (AdaBoost) COVID-19 deep learning (DL).