CFP last date
20 December 2024
Reseach Article

Management of Optimal Resource Allocation in the Cloud

by Manoj Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 185 - Number 25
Year of Publication: 2023
Authors: Manoj Kumar
10.5120/ijca2023923006

Manoj Kumar . Management of Optimal Resource Allocation in the Cloud. International Journal of Computer Applications. 185, 25 ( Jul 2023), 20-24. DOI=10.5120/ijca2023923006

@article{ 10.5120/ijca2023923006,
author = { Manoj Kumar },
title = { Management of Optimal Resource Allocation in the Cloud },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2023 },
volume = { 185 },
number = { 25 },
month = { Jul },
year = { 2023 },
issn = { 0975-8887 },
pages = { 20-24 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume185/number25/32848-2023923006/ },
doi = { 10.5120/ijca2023923006 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:27:02.900802+05:30
%A Manoj Kumar
%T Management of Optimal Resource Allocation in the Cloud
%J International Journal of Computer Applications
%@ 0975-8887
%V 185
%N 25
%P 20-24
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The management of resource allocation in the cloud is a critical issue that has received significant attention in recent years due to the increasing demand for cloud-based services. The efficient allocation of resources is crucial to meet the requirements of different applications and to optimize the utilization of available resources. This research paper explores the concept of optimal management of resource allocation in the cloud. The paper analyzes different approaches to resource allocation and discusses the advantages and limitations of each approach. The research also examines various factors that affect resource allocation in the cloud, including workload, resource availability, and resource utilization. The paper proposes a novel approach to resource allocation that is based on machine learning algorithms. The approach uses historical data to predict resource utilization and allocate resources accordingly. The research also investigates the impact of different factors on the performance of the proposed approach and compares it with other existing approaches. The findings of this research paper provide insights into the optimal management of resource allocation in the cloud. The proposed approach is shown to be effective in improving resource utilization and meeting the requirements of different applications. The research also highlights the importance of considering different factors that affect resource allocation in the cloud to achieve optimal performance.

References
  1. S. Shirazipourazad and S. Mashayekhi, "Resource allocation for cloud-based software systems: A systematic review," Journal of Systems and Software, vol. 162, pp. 79-104, 2020. DOI: 10.1016/j.jss.2019.110498
  2. Md. Abu Kausar, Md. Nasar, and Sanjeev Kumar Singh. (2013). "A Detailed Study on Information Retrieval using Genetic Algorithm," Journal of Industrial and Intelligent Information, Vol.1, No.3, pp. 122-127, doi: 10.12720/jiii.1.3.122-127.
  3. K. Saleh and M. H. Alhazmi, "Resource allocation techniques for real-time software systems: A survey," ACM Computing Surveys, vol. 53, no. 5, 2020. DOI: 10.1145/3418318
  4. J. Gong, J. Peng, and Y. Wang, "A survey on resource allocation for software-defined networks," Computer Networks, vol. 165, 2019. DOI: 10.1016/j.comnet.2019.106950
  5. Md. Nasar, Prashant Johri and Udayan Chanda, "A Differential Evolution Approach for Software Testing Effort Allocation," Journal of Industrial and Intelligent Information, Vol. 1, No. 2, pp. 111-115, June 2013. doi: 10.12720/jiii.1.2.111-115.
  6. M. Nasar and P. Johri. (2016). ―Testing resource allocation for fault detection process‖. In Smart Trends in Information Technology and Computer Communications. A. Unal et al. (Eds.). 683--690. DOI:10.1007/978-981-10- 3433-6_82.
  7. Johri, P., Nasar, M., Chanda, U. (2013). ―A genetic algorithm approach for optimal allocation of software testing effort‖. International Journal of Computer Applications. 68, 21–25.
  8. M. H. Alhazmi and K. Saleh, "Resource allocation techniques for multimedia software systems: A survey," Journal of Multimedia Tools and Applications, vol. 77, no. 1, pp. 47-80, 2018. DOI: 10.1007/s11042-016-4114-8
  9. P. Johri, M. Nasar, S. Das, and M. Kumar. (2016). ―Open source software reliability growth models for distributed environment based on component-specific testing-effort. In Proceedings of the 2nd International Conference on Information and Communication Technology for Competitive Strategies. 75. DOI:10.1145/2905055.2905283
  10. G. Gao and J. Shao, "A survey on resource allocation for mobile software systems," Journal of Network and Computer Applications, vol. 75, pp. 189-202, 2016. DOI: 10.1016/j.jnca.2016.09.012
  11. Nasar, M., Johri, P. (2014). ―Testing and Debugging Resource Allocation for Fault Detection and Removal Process‖. International Journal of New Computer Architectures and their Applications, no. 4, pp. 193—200.
  12. F. Chen, X. Liu, and Y. Liu, "Survey on resource allocation in virtualized environments," Journal of Network and Computer Applications, vol. 94, pp. 72-84, 2017. DOI: 10.1016/j.jnca.2017.07.020
  13. S. S. Islam, M. N. B. Chowdhury, and M. A. Alam, "A survey on resource allocation techniques in cloud computing," Journal of Cloud Computing, vol. 8, no. 1, 2019. DOI: 10.1186/s13677-019-0143-3
  14. M. M. S. Rana, M. H. Alhazmi, and K. Saleh, "Resource allocation for big data processing in cloud computing: A survey," Journal of Big Data, vol. 6, no. 1, 2019. DOI: 10.1186/s40537-019-0209-9
  15. Md. Nasar, Prashant Johri, Udayan Chanda,"Dynamic Effort Allocation Problem Using Genetic Algorithm Approach", IJMECS, vol.6, no.6, pp.46-52, 2014.DOI: 10.5815/ijmecs.2014.06.06
  16. R. V. Bonam, K. Raju, and M. V. R. K. Murthy, "A survey on resource allocation techniques for software-defined cloud computing environments," Journal of Network and Computer Applications, vol. 109, pp. 98-119, 2018. DOI: 10.1016/j.jnca.2018.03.012
  17. Kausar, M. A., Fageeri, S. O., & Soosaimanickam, A. (2023). Sentiment Classification based on Machine Learning Approaches in Amazon Product Reviews. Engineering, Technology & Applied Science Research, 13(3), 10849-10855.
  18. Saleem Basha and Mohamed Nasar. Resource Allocation in Cloud: History Kerberos based Approach. International Journal of Computer Applications 184(12):36-43, May 2022
  19. Y. Zheng, X. Zhang, and D. Yuan, "A survey on resource allocation for container-based virtualization," IEEE Access, vol. 8, pp. 121039-121054, 2020. DOI: 10.1109/ACCESS.2020.3002513
  20. Nasar, M., & Johri, P. (2015). Testing Resource Allocation for Modular Software using Genetic Algorithm. IJNCAA, Vol. 5, No. 1, pp. 29-38.
  21. Oprescu, T. Kielmann, (2010). “Bag-of-Tasks Scheduling under Budget Constraints”, IEEE Second International Conference on Cloud Computing Technology and Science (CloudCom), pages 351-359.
  22. Md. Nasar, Prashant Johri, Udayan Chanda,"Resource Allocation Policies for Fault Detection and Removal Process", IJMECS, vol.6, no.11, pp.52-57, 2014.DOI: 10.5815/ijmecs.2014.11.07
  23. F. Zhang, J. Cao, K. Hwang, and C. Wu. (2011). “Ordinal Optimized Scheduling of Scientific Workflows in Elastic Compute Clouds”, In Proceedings of the 2011 IEEE Third International Conference on Cloud Computing Technology and Science.
  24. Md. Nasar, Prashant Johri, Udayan Chanda,"Software Testing Resource Allocation and Release Time Problem: A Review", IJMECS, vol.6, no.2, pp.48-55, 2014.DOI: 10.5815/ijmecs.2014.02.07
  25. Ejarque J. (2010). “A Multi-agent Approach for Semantic Resource Allocation”. 2010 IEEE Second International Conference on Cloud Computing Technology and Science, pp. 335- 342. Mohammad Nasar. Web 3.0: A Review and its Future. International Journal of Computer Applications 185(10):41-46, May 2023.
  26. Nasar, M.; Kausar, M.A. Suitability of Influxdb Database for Iot Applications. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 1850–1857.
  27. M. A. Kausar, A. Soosaimanickam, and M. Nasar, “Public Sentiment Analysis on Twitter Data during COVID-19 Outbreak,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 2, pp. 415–422, 2021
  28. Saidi, K. S. S. A., Kausar, M. A., & Elshaiekh, N. E. M. (2021). The Impact of COVID-19 on Economic of Oman and Omani Customer’s Behaviour. International Journal of Scientific Research and Management (IJSRM), 9(07), 2266-2279.
  29. M. A. Kausar, M. Nasar and A. Moyaid, "SQL Injection Detection and Prevention Techniques in ASP .NET Web Application," International Journal of Recent Technology and Engineering (IJRTE, pp. 7759-7766, September 2019
  30. R. Van Bossche, K. Vanmechelen, and J. Broeckhove. (2011). Cost-Efficient Scheduling Heuristics for Deadline Constrained Workloads on Hybrid Clouds, IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), pages 320-327.
  31. Kausar MA, Nasar M (2021) SQL versus NoSQL databases to assess their appropriateness for big data application. Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science), 14(4), pp.1098–1108.
  32. Kausar MA, Nasar M, Singh SK. Maintaining the repository of search engine freshness using mobile crawler. In: 2013 Annu. International Conference of the Emerg. Res. Areas 2013 Int. Conf. Microelectron. Commun. Renew. Energy, IEEE, 2013, 1–6.
  33. Abu Kausar M, Nasar M, Soosaimanickam A (2022) A Study of Performance and Comparison of NoSQL Databases: MongoDB, Cassandra, and Redis Using YCSB. Indian Journal of Science and Technology 15(31): 1532-1540
  34. Kausar MA, Nasar M. An effective technique for detection and prevention of SQLIA by utilizing CHECKSUM based string matching. International Journal of Scientific & Engineering Research. 2018;9(1):1177–1182
  35. Kausar, M. A., Dhaka, V., and Singh, S. K.. 2013. Web crawler: a review. International Journal of Computer Applications 63:31–36
  36. D. Niyato, A.V. Vasilakos, and K. Zhu. (2011). Resource and Revenue Sharing with Coalition Formation of Cloud Providers: Game Theoretic Approach, 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 215-224
  37. Md. A. Kausar, V. S. Dhaka, and S. K. Singh, "An Effective Parallel Web Crawler based on Mobile Agent and Incremental Crawling," Journal of Industrial and Intelligent Information, vol. 1, no. 2, pp. 86–90, Jun. 2013.
  38. Md. A. Kausar, V. S. Dhaka, and S. K. Singh, "Web Crawler Based on Mobile Agent and Java Aglets," International Journal of Information Technology and Computer Science, vol. 5, no. 10, pp. 85–91, Sep. 2013
  39. Khan, M.S.; Kausar, M.A.; Nawaz, S.S. Big Data Analytics Techniques to Obtain Valuable Knowledge. Indian J. Sci. Technol. 2018, 11, 14
  40. Md. Abu Kausar, Md. Nasar & Sanjeev Kumar Singh, “Information Retrieval using Soft Computing: An Overview”, IJSER, Vol. 4, Issue. 4, April 2013
  41. Kausar, M.A., Dhaka, V.S., Singh, S.K.: Implementation of parallel web crawler through .NET technology. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 6(8), 59–65 (2014)
  42. Kausar A, Dhaka VS,  Singh SK. Design of Web Crawler for the Client – Server Technology. Indian Journal of Science and Technology. 2015 Dec; 8(36):1–7.
  43. Abu Kausar M, Dhaka VS, Singh SK. A novel web page change detection approach using Sql Server. International Journal of Modern Education and Computer Science (IJMECS), Hong Kong. 2015; 7(9):36–43.
Index Terms

Computer Science
Information Sciences

Keywords

Resource allocation Cloud software SRGM