CFP last date
20 December 2024
Reseach Article

Performance Analysis of LSTM and XGBoost Models Optimization in Forecasting Crude Palm Oil (CPO) Production at Palm Oil Mill (POM)

by Kevien Aqbar, Riza Adrianti Supono
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 185 - Number 17
Year of Publication: 2023
Authors: Kevien Aqbar, Riza Adrianti Supono
10.5120/ijca2023922890

Kevien Aqbar, Riza Adrianti Supono . Performance Analysis of LSTM and XGBoost Models Optimization in Forecasting Crude Palm Oil (CPO) Production at Palm Oil Mill (POM). International Journal of Computer Applications. 185, 17 ( Jun 2023), 37-44. DOI=10.5120/ijca2023922890

@article{ 10.5120/ijca2023922890,
author = { Kevien Aqbar, Riza Adrianti Supono },
title = { Performance Analysis of LSTM and XGBoost Models Optimization in Forecasting Crude Palm Oil (CPO) Production at Palm Oil Mill (POM) },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2023 },
volume = { 185 },
number = { 17 },
month = { Jun },
year = { 2023 },
issn = { 0975-8887 },
pages = { 37-44 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume185/number17/32790-2023922890/ },
doi = { 10.5120/ijca2023922890 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:26:22.140467+05:30
%A Kevien Aqbar
%A Riza Adrianti Supono
%T Performance Analysis of LSTM and XGBoost Models Optimization in Forecasting Crude Palm Oil (CPO) Production at Palm Oil Mill (POM)
%J International Journal of Computer Applications
%@ 0975-8887
%V 185
%N 17
%P 37-44
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This research aims to test and compare the performance of LSTM (Long Short-Term Memory) and XGBoost (eXtreme Gradient Boosting) prediction models in forecasting the amount of crude palm oil (CPO) production in supporting production planning, stock management, and CPO sales. The background of this research was conducted because of the importance of accurate predictions in overcoming the instability of palm oil production in the future. Various prediction methods use univariate and multivariate data, and produce selected models such as ARIMA, SVR, Prophet, XGBoost, and LSTM. However, this research focuses on evaluating the performance of LSTM and XGBoost models by performing hyperparameter tuning optimization using multivariate data to find the most optimal model in forecasting CPO production with the smallest error rate. The results showed that after hyperparameter tuning, the LSTM model produced better prediction results with an accuracy rate of 93.7% and RMSE of 21.04. The XGBoost model also experienced improved performance after tuning with an RMSE of 22.17 and an accuracy rate of 92.8%. Although XGBoost initially provided superior prediction results closer to the actual data, the LSTM model became the best choice after passing the tuning process. This LSTM model can be used by POM management in production planning, tank stock management, and CPO sales. The results of this research are expected to help improve the efficiency and sustainability of the palm oil industry, as well as provide valuable information for stakeholders in making the right decisions.

References
  1. Adlin U. Lubis. (2008), Kelapa Sawit ( Elaeis Guineensis Jacq ) di Indonesia. Edisi kedua, Penerbit Pusat Penelitian Kelapa Sawit
  2. Chen, Z., Goh, H. S., Sin, K. L., Lim, K., Chung, N. K., & Liew, X. Y. (2021). Automated agriculture commodity price prediction system with machine learning techniques. Advances in Science, Technology and Engineering Systems Journal, 6(4), 376-384. https://doi.org/10.25046/aj060442
  3. Cheng, F., Yang, C., Zhou, C., Lan, L., Zhu, H., & Li, Y. (2020). Simultaneous determination of metal ions in zinc sulfate solution using UV–VIS spectrometry and SPSE-xgboost method. Sensors (Switzerland), 20(17), 1–14. https://doi.org/10.3390/s20174936
  4. Dobilas, S. (2022). LSTM recurrent neural Networks — How to teach a network to remember the past. Medium. https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e
  5. Fardhani, A. A., Simanjuntak, D. I., & Wanto, A. (2018). Prediksi Harga Eceran Beras Di Pasar Tradisional Di 33 Kota Di Indonesia Menggunakan Algoritma Backpropagation. Jurnal Infomedia, 3(1), 25–30.
  6. Gholamy, Afshin; Kreinovich, Vladik; and Kosheleva, Olga. (2018). Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation. Departmental Technical Reports (Computer Science). 2(1209). https://scholarworks.utep.edu/cs_techrep/1209
  7. Hadri, S., Naitmalek, Y., Najib, M., Bakhouya, M., Fakhri, Y., & Elaroussi, M. (2019). A comparative study of predictive approaches for load forecasting in smart buildings. Procedia Computer Science, 160, 173–180. https://doi.org/10.1016/j.procs.2019.09.458
  8. Junaidi, Koko. (2012). Analisis Faktor-Faktor Yang Mempengaruhi Produktivitas CPO PKS Sei Meranti PT. Perkebunan Nusantara Iii (Persero). Medan: Universitas Medan Area.
  9. Luo, J., Zhang, Z., Fu, Y., & Rao, F. (2021). Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms. Elsevier B.V, 27. https://doi.org/10.1016/j.rinp.2021.104462
  10. Mukhlis, M., Kustiyo, A., & Suharso, A. (2021). Peramalan Produksi Pertanian Menggunakan model long short-term memory. BINA INSANI ICT JOURNAL, 8(1), 22. https://doi.org/10.51211/biict.v8i1.1492
  11. Nyoman, N., Pinata, P., Sukarsa, M., Kadek, N., & Rusjayanthi, D. (2020). Prediksi Kecelakaan Lalu Lintas di Bali dengan XGBoost pada Python. JURNAL ILMIAH MERPATI, 8(3), 188–196.
  12. Oktarina, T., & Rasmila, D. (2018). PERAMALAN PRODUKSI CRUDE PALM OIL (CPO) MENGGUNAKAN METODE ARIMA PADA PT. SAMPOERNA AGRO TBK. In Seminar Nasional Sistem Informasi Indonesia.
  13. Oktarina, T., & Rasmila, D. (2018). PERAMALAN PRODUKSI CRUDE PALM OIL (CPO) MENGGUNAKAN METODE ARIMA PADA PT. SAMPOERNA AGRO TBK. SESINDO, 251–260.
  14. Produksi Sawit 2019 Capai 51,8 Juta ton |Republika online. (2020, February 4). Republika Online. https://ekonomi.republika.co.id/berita/q54sje370/produksi-sawit-2019-capai-518-juta-ton
  15. Rizki, M., Basuki, S., & Azhar, Y. (2020). Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory Untuk Prediksi Curah Hujan Kota Malang. REPOSITOR, 2(3), 331–338.
  16. Saragih, V. D., Melaca, K. M., Darmawan, R., & Hendrianie, N. (2018). Pra Desain Pabrik CPO (Crude PalmOil) dan PKO (Palm Kernel Oil) Dari Buah Kelapa Sawit. JURNAL TEKIK ITS, 7(1), 181–183.
  17. Silipo, R., & Palacio, V. (2022). KNIME Advanced Luck: A Guide for Advanced Users. Switzerland: KNIME Press.
  18. Supriyanto, Y., Ilhamsyah, M., & Enri, U. (2022). Prediksi Harga Minyak Kelapa Sawit Menggunakan Linear Regression Dan Random Forest. Jurnal Ilmiah Wahana Pendidikan, 8(7). https://doi.org/10.5281/zenodo.6559603
  19. Swami, D., Shah, A. D., & Ray, S. K. B. (2020). Predicting Future Sales of Retail Products using Machine Learning. http://arxiv.org/abs/2008.07779
  20. Ulfiah, K., Hakim, A., al Hakim, L., Ilham, D., Dimas Ilham, M., Muliyanto, M., Julianti, S., Sri Julianti, N., Ariyanti, N., Ramadhanti, N., Astuti, P., Puji Astuti, R., Nurfaizah, R., Giwangkara, R., & Suryani, R. (2018). Economic Value of Palm Oil (Elaeis guinensis) for Indonesian People. Munich Personal RePEc Archive, 90215. https://mpra.ub.uni-muenchen.de/90215/
  21. Wiranda, L., & Sadikin, M. (2019). PENERAPAN LONG SHORT TERM MEMORY PADA DATA TIME SERIES UNTUK MEMPREDIKSI PENJUALAN PRODUK PT. METISKA FARMA. Jurnal Nasional Pendidikan Teknik Informatika, 8(3), 184–196.
  22. Zhang, L., Bian, W., Qu, W., Tuo, L., & Wang, Y. (2021). Time series forecast of sales volume based on XGBoost. Journal of Physics: Conference Series, 1873(1). https://doi.org/10.1088/1742-6596/1873/1/012067
Index Terms

Computer Science
Information Sciences

Keywords

Time series Forecasting LSTM XGBoost Crude Palm Oil Multivariate Hyperparameter Tuning RMSE MAPE.