CFP last date
20 January 2025
Reseach Article

Diagnosis and Prognosis: Prediction of Epilepsy using EEG Signals in Combination with Machine Learning Classifiers

by Alina Ahsan, Sifatullah Siddiqi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 185 - Number 15
Year of Publication: 2023
Authors: Alina Ahsan, Sifatullah Siddiqi
10.5120/ijca2023922841

Alina Ahsan, Sifatullah Siddiqi . Diagnosis and Prognosis: Prediction of Epilepsy using EEG Signals in Combination with Machine Learning Classifiers. International Journal of Computer Applications. 185, 15 ( Jun 2023), 30-37. DOI=10.5120/ijca2023922841

@article{ 10.5120/ijca2023922841,
author = { Alina Ahsan, Sifatullah Siddiqi },
title = { Diagnosis and Prognosis: Prediction of Epilepsy using EEG Signals in Combination with Machine Learning Classifiers },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2023 },
volume = { 185 },
number = { 15 },
month = { Jun },
year = { 2023 },
issn = { 0975-8887 },
pages = { 30-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume185/number15/32772-2023922841/ },
doi = { 10.5120/ijca2023922841 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:26:08.749143+05:30
%A Alina Ahsan
%A Sifatullah Siddiqi
%T Diagnosis and Prognosis: Prediction of Epilepsy using EEG Signals in Combination with Machine Learning Classifiers
%J International Journal of Computer Applications
%@ 0975-8887
%V 185
%N 15
%P 30-37
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Epilepsy is a type of neurological disorder which impacts the brain’s central nervous system. While the effects vary from person to person, they com- monly include mental instability, moments of loss of awareness, and seizures.There are several classi- cal approaches for analysing EEG signals for seizures identification, all of which are time-consuming. Many seizure detection strategies based on machine learning techniques have recently been developed to replace traditional methods. A hybrid model for seizure prediction of 54-DWT mother wavelets analysis of EEG signals using GA (genetic algorithm) in combination with other five machine learning (ML) classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Artificial Neural Net- work (ANN) Naive Bayes (NB) and Random Forest is used in this paper.Using these 5 ML classifiers, the efficacy of 14 possible combinations for two-class epileptic seizure detection is evaluated. Nonetheless, the ANN classifier beat the other classifiers in most dataset combinations and attained the highest accuracy.

References
  1. Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adeli, H., & Subha, D. P. (2018). Automated eeg-based screening of depression using deep convolutional neural network. Computer meth- ods and programs in biomedicine, 161 , 103– 113.
  2. Ahmedt-Aristizabal, D., Fernando, T., Denman, S., Robinson, J. E., Sridharan, S., Johnston, P. J., Fookes, C. (2020). Identification of children at risk of schizophrenia via deep learning and eeg responses. IEEE Journal of biomedical and health informatics, 25 (1), 69–76.
  3. Akut, R. (2019). Wavelet based deep learning ap- proach for epilepsy detection. Health informa- tion science and systems, 7 (1), 8.
  4. Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indi- cations of nonlinear deterministic and finite- dimensional structures in time series of brain electrical activity: Dependence on recording re- gion and brain state. Physical Review E , 64 (6), 061907.
  5. Anuragi, A., & Sisodia, D. S. (2019). Alcohol use disorder detection using eeg signal features and flexible analytical wavelet transform. Biomed- ical Signal Processing and Control , 52 , 384– 393.
  6. Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite, R. E., Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up pri- mate brain. Journal of Comparative Neurology, 513 (5), 532–541.
  7. Berger, H. (1929). Uber das electrenkephalogramm des menschen. Arch Psychiat Nervenkrankh, 87 , 527–570.
  8. Boersma, M., Smit, D. J., de Bie, H. M., Van Baal, G. C. M., Boomsma, D. I., de Geus, E. J., Stam, C. J. (2011). Network analysis of resting state eeg in the developing young brain: structure comes with maturation. Human brain mapping , 32 (3), 413–425.
  9. Brovelli, A., Battaglini, P. P., Naranjo, J. R., & Bu- dai, R. (2002). Medium-range oscillatory net- work and the 20-hz sensorimotor induced po- tential. Neuroimage, 16 (1), 130–141.
  10. Chen, D., Wan, S., Xiang, J., & Bao, F. S. (2017). A high-performance seizure detection algorithm based on discrete wavelet transform (dwt) and eeg. PloS one, 12 (3), e0173138.
  11. Chen, X., Ji, J., Ji, T., & Li, P. (2018). Cost-sensitive deep active learning for epileptic seizure detec- tion. In Proceedings of the 2018 acm interna- tional conference on bioinformatics, computational biology, and health informatics (pp. 226–235).
  12. Correa, A. G., Orosco, L., & Laciar, E. (2014). Automatic detection of drowsiness in eeg records based on multimodal analysis. Medical engi- neering & physics, 36 (2), 244–249.
  13. Davis, L. (1991). Handbook of genetic algorithms. Dedeo, M., & Garg, M. (2021). Early detection of pediatric seizures in the high gamma band. IEEE Access, 9 , 85209–85216.
  14. Ferrara, M., & De Gennaro, L. (2011). Going lo- cal: insights from eeg and stereo-eeg studies of the human sleep-wake cycle. Current topics in medicinal chemistry, 11 (19), 2423–2437.
  15. Genuth, I. (2015). All in the mind. Engineering & Technology , 10 (5), 37–39.
  16. Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addion wesley, 1989 (102), 36.
  17. Hamad, A., Houssein, E. H., Hassanien, A. E., & Fahmy, A. A. (2018a). A hybrid eeg signals classification approach based on grey wolf op- timizer enhanced svms for epileptic detection. In Proceedings of the international conference on advanced intelligent systems and informat- ics 2017 (pp. 108–117).
  18. Hamad, A., Houssein, E. H., Hassanien, A. E., & Fahmy, A. A. (2018b). Hybrid grasshopper optimization algorithm and support vector ma- chines for automatic seizure detection in eeg signals. In The international conference on advanced machine learning technologies and ap- plications (amlta2018) (pp. 82–91).
  19. Hassan, A. R., & Subasi, A. (2016). Automatic iden- tification of epileptic seizures from eeg signals using linear programming boosting. computer methods and programs in biomedicine, 136 , 65– 77.
  20. Joachims, T. (2005). Text categorization with sup- port vector machines: Learning with many rel- evant features. In Machine learning: Ecml-98: 10th european conference on machine learning chemnitz, germany, april 21–23, 1998 proceedings (pp. 137–142).
  21. Kaleem, M., Guergachi, A., & Krishnan, S. (2018). Patient-specific seizure detection in long-term eeg using wavelet decomposition. Biomedical Signal Processing and Control , 46 , 157–165.
  22. Kitano, L. A. S., Sousa, M. A. A., Santos, S. D., Pires, R., Thome-Souza, S., & Campo, A. B. (2018). Epileptic seizure prediction from eeg signals using unsupervised learning and a polling-based decision process. In Artificial neural networks and machine learning icann 2018: 27th international conference on artifi- cial neural networks, rhodes, greece, october 4- 7, 2018, proceedings, part ii 27 (pp. 117–126).
  23. Kołodziej, M., Majkowski, A., & Rak, R. J. (2011). A new method of eeg classification for bci with feature extraction based on higher order statis- tics of wavelet components and selection with genetic algorithms. In Adaptive and natural computing algorithms: 10th international con- ference, icannga 2011, ljubljana, slovenia, april 14-16, 2011, proceedings, part i 10 (pp. 280–289).
  24. Kumar, M., Pachori, R. B., & Acharya, U. R. (2017). Use of accumulated entropies for automated de- tection of congestive heart failure in flexible an- alytic wavelet transform framework based on short-term hrv signals. Entropy, 19 (3), 92.
  25. Lekshmy, H., Panickar, D., & Harikumar, S. (2022). Comparative analysis of multiple ma- chine learning algorithms for epileptic seizure prediction. In Journal of physics: Conference series (Vol. 2161, p. 012055).
  26. Lestari, F. P., Haekal, M., Edison, R. E., Fauzy, F. R., Khotimah, S. N., & Haryanto, F. (2020). Epileptic seizure detection in eegs by using ran- dom tree forest, naïve bayes and knn classifica- tion. In Journal of physics: Conference series (Vol. 1505, p. 012055).
  27. Li, M., Chen, W., & Zhang, T. (2017). Automatic epileptic eeg detection using dt-cwt-based non- linear features. Biomedical Signal Processing and Control , 34 , 114–125.
  28. Lima, C. A., Coelho, A. L., Madeo, R. C., & Peres, S. M. (2016). Classification of electromyog- raphy signals using relevance vector machines and fractal dimension. Neural Computing and Applications, 27 , 791–804.
  29. Lin, C.-T., Chang, C.-J., Lin, B.-S., Hung, S.-H., Chao, C.-F., & Wang, I.-J. (2010). A real-time wireless brain–computer interface system for drowsiness detection. IEEE transactions on biomedical circuits and systems, 4 (4), 214–222. Mardini, W., Yassein, M. M. B., Al-Rawashdeh, R., Aljawarneh, S., Khamayseh, Y., & Meqdadi, O. (2020). Enhanced detection of epileptic seizure using eeg signals in combination with machine learning classifiers. IEEE Access, 8 , 24046–24055.
  30. Michalewicz, Z. (1999). Genetic algorithms+ data structures= evolution programs. springer- verlag, 1999. Google Scholar Google Scholar Digital Library Digital Library.
  31. Moshrefi, R., Mahjani, M. G., & Jafarian, M. (2014). Application of wavelet entropy in analysis of electrochemical noise for corrosion type identifi- cation. Electrochemistry Communications, 48 , 49–51.
  32. Mumtaz, W., Vuong, P. L., Xia, L., Malik, A. S., & Abd Rashid, R. B. (2016). Automatic diag- nosis of alcohol use disorder using eeg features. Knowledge-Based Systems, 105 , 48–59.
  33. Nasiri, J. A., Sabzekar, M., Yazdi, H. S., Naghibzadeh, M., & Naghibzadeh, B. (2009). Intelligent arrhythmia detection using genetic algorithm and emphatic svm (esvm). In 2009 third uksim european symposium on computer modeling and simulation (pp. 112–117).
  34. Park, C., Choi, G., Kim, J., Kim, S., Kim, T.-J., Min, K., . . . Chong, J. (2018). Epileptic seizure detection for multi-channel eeg with deep con- volutional neural network. In 2018 international conference on electronics, information, and communication (iceic) (pp. 1–5).
  35. Pontil, M., & Verri, A. (1998). Support vector ma- chines for 3d object recognition. IEEE trans- actions on pattern analysis and machine intel- ligence, 20 (6), 637–646.
  36. Raghu, S., & Sriraam, N. (2018). Classification of focal and non-focal eeg signals using neighbor- hood component analysis and machine learning algorithms. Expert Systems with Applications,113 , 18–32.
  37. Satapathy, S. K., Jagadev, A. K., & Dehuri, S. (2017a). Weighted majority voting based en- semble of classifiers using different machine learning techniques for classification of eeg sig- nal to detect epileptic seizure. Informatica (03505596), 41 (1).
  38. Satapathy, S. K., Jagadev, A. K., & Dehuri, S. (2017b). Weighted majority voting based en- semble of classifiers using different machine learning techniques for classification of eeg signal to detect epileptic seizure. Informatica (03505596), 41 (1).
  39. Schölkopf, B., Burges, C. J., Smola, A. J., et al. (1999). Advances in kernel methods: support vector learning. MIT press.
  40. Schölkopf, B., Smola, A. J., Bach, F., et al. (2002). Learning with kernels: support vector ma- chines, regularization, optimization, and be- yond. MIT press.
  41. Stam, C. J., Montez, T., Jones, B., Rombouts, S., Van Der Made, Y., Pijnenburg, Y. A., & Schel- tens, P. (2005). Disturbed fluctuations of rest- ing state eeg synchronization in alzheimer’s dis- ease. Clinical neurophysiology , 116 (3), 708–715.
  42. Subasi, A. (2007a). Eeg signal classification using wavelet feature extraction and a mixture of ex- pert model. Expert Systems with Applications, 32 (4), 1084–1093.
  43. Subasi, A. (2007b). Eeg signal classification using wavelet feature extraction and a mixture of ex- pert model. Expert Systems with Applications, 32 (4), 1084–1093.
  44. Subasi, A., Kevric, J., & Abdullah Canbaz, M. (2019). Epileptic seizure detection using hybrid machine learning methods. Neural Computing and Applications, 31 , 317–325.
  45. Türk, Ö., & Özerdem, M. S. (2019). Epilepsy de- tection by using scalogram based convolutional neural network from eeg signals. Brain sci- ences, 9 (5), 115.
  46. Yao, X., Cheng, Q., & Zhang, G.-Q. (2019a). Au- tomated classification of seizures against non- seizures: A deep learning approach. arXiv preprint arXiv:1906.02745 .
  47. Yao, X., Cheng, Q., & Zhang, G.-Q. (2019b). A novel independent rnn approach to classification of seizures against non-seizures. arXiv preprint arXiv:1903.09326 .
  48. Yu, G.-X., Ostrouchov, G., Geist, A., & Samatova, N. F. (2003). An svm-based algorithm for iden- tification of photosynthesis-specific genome fea- tures. In Computational systems bioinformat- ics. csb2003. proceedings of the 2003 ieee bioin- formatics conference. csb2003 (pp. 235–243).
  49. Yu, H., Lei, X., Song, Z., Liu, C., & Wang, J. (2019). Supervised network-based fuzzy learn- ing of eeg signals for alzheimer’s disease identification. IEEE Transactions on Fuzzy Systems, 28 (1), 60–71.
  50. Yuvaraj, R., Rajendra Acharya, U., & Hagiwara, Y. (2018). A novel parkinson’s disease diagnosis index using higher-order spectra features in eeg signals. Neural Computing and Applications, 30 , 1225–1235.
  51. Zakeri, Z., Assecondi, S., Bagshaw, A., & Arvanitis, T. (2014). Influence of signal preprocessing on ica-based eeg decomposition. In Xiii mediter- ranean conference on medical and biological en- gineering and computing 2013: Medicon 2013, 25-28 september 2013, seville, spain (pp. 734– 737).
Index Terms

Computer Science
Information Sciences

Keywords

Electroencephalogram (EEG) discrete wavelet transform (DWT) genetic algo- rithm (GA) support vector machine (SVM) artificial neural network (ANN) k-nearest neighbor (k-NN) naive bayes (NB) random forest (RF).