CFP last date
20 December 2024
Reseach Article

Diagnosis and Prognosis: Literature Review on Prediction of Epilepsy using Machine Learning Techniques

by Alina Ahsan, Sifatullah Siddiqi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 185 - Number 15
Year of Publication: 2023
Authors: Alina Ahsan, Sifatullah Siddiqi
10.5120/ijca2023922840

Alina Ahsan, Sifatullah Siddiqi . Diagnosis and Prognosis: Literature Review on Prediction of Epilepsy using Machine Learning Techniques. International Journal of Computer Applications. 185, 15 ( Jun 2023), 10-29. DOI=10.5120/ijca2023922840

@article{ 10.5120/ijca2023922840,
author = { Alina Ahsan, Sifatullah Siddiqi },
title = { Diagnosis and Prognosis: Literature Review on Prediction of Epilepsy using Machine Learning Techniques },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2023 },
volume = { 185 },
number = { 15 },
month = { Jun },
year = { 2023 },
issn = { 0975-8887 },
pages = { 10-29 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume185/number15/32771-2023922840/ },
doi = { 10.5120/ijca2023922840 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:26:08.038585+05:30
%A Alina Ahsan
%A Sifatullah Siddiqi
%T Diagnosis and Prognosis: Literature Review on Prediction of Epilepsy using Machine Learning Techniques
%J International Journal of Computer Applications
%@ 0975-8887
%V 185
%N 15
%P 10-29
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Researchers are working to integrate machine learn- ing (ML) and artificial intelligence (AI) tools to im- prove and develop clinical practice. Machine learn- ing is becoming more important in medical image analysis. One of the fundamental goals of health- care is to provide timely preventative measures by early disease diagnosis and prognosis. This is cer- tainly relevant for epilepsy, which is characterized by recurring and unpredictable episodes. If epilep- tic seizures can be detected in advance, patients can avoid the unfavourable repercussions. Seizure prog- nosis remains an unsolved problem despite decades of research. This is likely to continue partly due to a lack of information to resolve this issue .Promis- ing new advancements in the ML-based techniques have the ability to alter the situation in the detec- tion and prediction of ES. We present a complete re- view of cutting-edge ML techniques for early seizure prediction with the help of EEG signals. We will highlight research gaps and problems and give rec- ommendations for future initiatives.

References
  1. Abbasi, R., & Esmaeilpour, M. (2017). Selecting sta- tistical characteristics of brain signals to detect epileptic seizures using discrete wavelet trans- form and perceptron neural network. Interna- tional Journal of Interactive Multimedia & Ar- tificial Intelligence, 4 (5).
  2. Abualsaud, K., Mahmuddin, M., Saleh, M., & Mo- hamed, A. (2015). Ensemble classifier for epileptic seizure detection for imperfect eeg data. The Scientific World Journal , 2015 .
  3. Ahmedt-Aristizabal, D., Fernando, T., Denman, S., Robinson, J. E., Sridharan, S., Johnston, P. J., Fookes, C. (2020). Identification of children at risk of schizophrenia via deep learning and eeg responses. IEEE Journal of biomedical and health informatics, 25 (1), 69–76.
  4. Akut, R. (2019). Wavelet based deep learning ap- proach for epilepsy detection. Health informa- tion science and systems, 7 (1), 8.
  5. Alaverdyan, Z., Jung, J., Bouet, R., & Lartizien, C. (2020). Regularized siamese neural network for unsupervised outlier detection on brain multi- parametric magnetic resonance imaging: appli- cation to epilepsy lesion screening. Medical im- age analysis, 60 , 101618.
  6. Alaverdyan, Z., & Lartizien, C. (2018). Feature extraction with regularized siamese networks for outlier detection: application to lesion screening in medical imaging. arXiv preprint arXiv:1805.01717 .
  7. Al Ghayab, H. R., Li, Y., Siuly, S., & Abdulla, S. (2019). Epileptic seizures detection in eegs blending frequency domain with information gain technique. Soft Computing, 23 , 227–239.
  8. Alickovic, E., Kevric, J., & Subasi, A. (2018). Perfor- mance evaluation of empirical mode decompo- sition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomedical signal processing and control , 39 , 94–102.
  9. Amin, H. U., Malik, A. S., Ahmad, R. F., Badruddin, N., Kamel, N., Hussain, M., & Chooi, W.-T. (2015). Feature extraction and classification for eeg signals using wavelet transform and machine learning techniques. Australasian physical & engineering sciences in medicine, 38 , 139– 149.
  10. Antoniades, A., Spyrou, L., Took, C. C., & Sanei, S. (2016). Deep learning for epileptic intracranial eeg data. In 2016 ieee 26th international work- shop on machine learning for signal processing (mlsp) (pp. 1–6).
  11. Awad, M., & Khanna, R. (2015). Efficient learning machines: theories, concepts, and applications for engineers and system designers. Springer nature.
  12. Bandarabadi, M., Teixeira, C. A., Rasekhi, J., & Dourado, A. (2015a). Epileptic seizure pre- diction using relative spectral power features. Clinical Neurophysiology , 126 (2), 237–248.
  13. Bandarabadi, M., Teixeira, C. A., Rasekhi, J., & Dourado, A. (2015b). Epileptic seizure pre- diction using relative spectral power features. Clinical Neurophysiology , 126 (2), 237–248.
  14. Belhadj, S., Attia, A., Adnane, A. B., Ahmed-Foitih, Z., & Taleb, A. A. (2016). Whole brain epilep- tic seizure detection using unsupervised classi- fication. In 2016 8th international conference on modelling, identification and control (icmic) (pp. 977–982).
  15. Bhattacharyya, A., & Pachori, R. B. (2017). A multivariate approach for patient-specific eeg seizure detection using empirical wavelet trans- form. IEEE Transactions on Biomedical Engi- neering, 64 (9), 2003–2015.
  16. Birjandtalab, J., Jarmale, V. N., Nourani, M., & Har- vey, J. (2018). Imbalance learning using neu- ral networks for seizure detection. In 2018 ieee biomedical circuits and systems conference (bio- cas) (pp. 1–4).
  17. Birjandtalab, J., Pouyan, M. B., Cogan, D., Nourani, M., & Harvey, J. (2017). Automated seizure detection using limited-channel eeg and non- linear dimension reduction. Computers in bi- ology and medicine, 82 , 49–58.
  18. Bizopoulos, P., Lambrou, G. I., & Koutsouris, D. (2019). Signal2image modules in deep neural networks for eeg classification. In 2019 41st an- nual international conference of the ieee engi- neering in medicine and biology society (embc)(pp. 702–705).
  19. Brari, Z., & Belghith, S. (2021). A novel ma- chine learning approach for epilepsy diagnosis using eeg signals based on correlation dimen- sion. IFAC-PapersOnLine, 54 (17), 7–11.
  20. Cantor-Rivera, D., Khan, A. R., Goubran, M., Mir- sattari, S. M., & Peters, T. M. (2015). De- tection of temporal lobe epilepsy using support vector machines in multi-parametric quantita- tive mr imaging. Computerized Medical Imag- ing and Graphics, 41 , 14–28.
  21. Celebi, M. E., & Aydin, K. (2016). Unsupervised learning algorithms (Vol. 9). Springer.
  22. Chen, D., Wan, S., Xiang, J., & Bao, F. S. (2017). A high-performance seizure detection algorithm based on discrete wavelet transform (dwt) and eeg. PloS one, 12 (3), e0173138.
  23. Chen, S., Zhang, X., Chen, L., & Yang, Z. (2019). Automatic diagnosis of epileptic seizure in elec- troencephalography signals using nonlinear dy- namics features. IEEE Access, 7 , 61046–61056. Chen, X., Ji, J., Ji, T., & Li, P. (2018). Cost-sensitive deep active learning for epileptic seizure detection. In Proceedings of the 2018 acm interna- tional conference on bioinformatics, computa- tional biology, and health informatics (pp. 226– 235).
  24. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20 , 273–297.
  25. Dedeo, M., & Garg, M. (2021). Early detection of pe- diatric seizures in the high gamma band. IEEE Access, 9 , 85209–85216.
  26. Del Gaizo, J., Mofrad, N., Jensen, J. H., Clark, D., Glenn, R., Helpern, J., & Bonilha, L. (2017). Using machine learning to classify temporal lobe epilepsy based on diffusion mri. Brain and behavior , 7 (10), e00801.
  27. Deo, R. C. (2015). Machine learning in medicine.
  28. Circulation, 132 (20), 1920–1930.
  29. Direito, B., Teixeira, C. A., Sales, F., Castelo- Branco, M., & Dourado, A. (2017). A realis- tic seizure prediction study based on multiclass svm. International journal of neural systems, 27 (03), 1750006.
  30. Donos, C., Dümpelmann, M., & Schulze-Bonhage, A. (2015). Early seizure detection algorithm based on intracranial eeg and random forest classifi- cation. International journal of neural systems, 25 (05), 1550023.
  31. Eadie, M. J. (2012). Shortcomings in the current treatment of epilepsy. Expert review of neu- rotherapeutics, 12 (12), 1419–1427.
  32. England, M. J., Liverman, C. T., Schultz, A. M., & Strawbridge, L. M. (2012). Epilepsy across the spectrum: Promoting health and understand- ing.: A summary of the institute of medicine report. Epilepsy & Behavior , 25 (2), 266–276.
  33. Fasil, O., & Rajesh, R. (2019). Time-domain expo- nential energy for epileptic eeg signal classifica- tion. Neuroscience letters, 694 , 1–8.
  34. Faust, O., Hagiwara, Y., Hong, T. J., Lih, O. S., & Acharya, U. R. (2018). Deep learning for healthcare applications based on physiological signals: A review. Computer methods and pro- grams in biomedicine, 161 , 1–13.
  35. Fisher, R. S., Acevedo, C., Arzimanoglou, A., Bo- gacz, A., Cross, J. H., Elger, C. E., . . . others (2014). Ilae official report: a practical clinical definition of epilepsy. Epilepsia, 55 (4), 475–482.
  36. Gasparini, S., Campolo, M., Ieracitano, C., Mam- mone, N., Ferlazzo, E., Sueri, C., . . . Morabito, F. C. (2018). Information theoretic-based inter- pretation of a deep neural network approach in diagnosing psychogenic non-epileptic seizures. Entropy, 20 (2), 43.
  37. Gleichgerrcht, E., Munsell, B., Bhatia, S., Vander- griftz, W. A., Rorden, C., McDonald, C., . . . Bonilha, L. (2018). Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery. Epilepsia, 59 (9), 1643–1654.
  38. Göksu, H. (2018). Eeg based epileptiform pat- tern recognition inside and outside the seizure states. Biomedical Signal Processing and Con- trol , 43 , 204–215.
  39. Hassan, A. R., & Subasi, A. (2016). Automatic iden- tification of epileptic seizures from eeg signals using linear programming boosting. computer methods and programs in biomedicine, 136 , 65– 77.
  40. Höller, Y., Butz, K. H., Thomschewski, A. C.,Schmid, E. V., Hofer, C. D., Uhl, A., . . . oth- ers (2020). Prediction of cognitive decline in temporal lobe epilepsy and mild cognitive impairment by eeg, mri, and neuropsychology. Computational Intelligence and Neuroscience, 2020 .
  41. Hosseini, M.-P., Pompili, D., Elisevich, K., & Soltanian-Zadeh, H. (2018). Random ensemble learning for eeg classification. Artificial intelli- gence in medicine, 84 , 146–158.
  42. Hosseini, M.-P., Soltanian-Zadeh, H., Elisevich, K., & Pompili, D. (2016). Cloud-based deep learn- ing of big eeg data for epileptic seizure pre- diction. In 2016 ieee global conference on sig- nal and information processing (globalsip) (pp. 1151–1155).
  43. Hussein, R., Palangi, H., Wang, Z. J., & Ward, R. (2018). Robust detection of epileptic seizures using deep neural networks. In 2018 ieee in- ternational conference on acoustics, speech and signal processing (icassp) (pp. 2546–2550).
  44. Hussein, R., Palangi, H., Ward, R. K., & Wang, Z. J. (2019). Optimized deep neural network archi- tecture for robust detection of epileptic seizures using eeg signals. Clinical Neurophysiology, 130 (1), 25–37.
  45. Ibrahim, S., Djemal, R., & Alsuwailem, A. (2018). Electroencephalography (eeg) signal processing for epilepsy and autism spectrum disorder di- agnosis. Biocybernetics and Biomedical Engi- neering, 38 (1), 16–26.
  46. Ilakiyaselvan, N., Khan, A. N., & Shahina, A. (2020). Deep learning approach to detect seizure using reconstructed phase space images. Journal of Biomedical Research, 34 (3), 240.
  47. Jacobs, D., Hilton, T., Del Campo, M., Carlen, P. L., & Bardakjian, B. L. (2018). Classifica- tion of pre-clinical seizure states using scalp eeg cross-frequency coupling features. IEEE Trans- actions on Biomedical Engineering, 65 (11), 2440–2449.
  48. Jaiswal, A. K., & Banka, H. (2017). Local pattern transformation based feature extraction tech- niques for classification of epileptic eeg signals. Biomedical Signal Processing and Control , 34 , 81–92.
  49. Jaiswal, A. K., & Banka, H. (2018). Epileptic seizure detection in eeg signal using machine learning techniques. Australasian physical & engineering sciences in medicine, 41 , 81–94.
  50. Jia, J., Goparaju, B., Song, J., Zhang, R., & West- over, M. B. (2017). Automated identification of epileptic seizures in eeg signals based on phase space representation and statistical features in the ceemd domain. Biomedical Signal Process- ing and Control , 38 , 148–157.
  51. JIANG, H.-y., LIU, R.-n., GAO, F.-f., & MIAO, Y.(2017). Hemisphere symmetry feature based on tensor space and recognition of epilepsy. Jour- nal of Northeastern University (Natural Sci- ence), 38 (7), 923.
  52. Jrad, N., Kachenoura, A., Merlet, I., Bartolomei, F., Nica, A., Biraben, A., & Wendling, F. (2016). Automatic detection and classification of high-frequency oscillations in depth-eeg sig- nals. IEEE Transactions on Biomedical Engi- neering, 64 (9), 2230–2240.
  53. Kabir, E., Zhang, Y., et al. (2016). Epileptic seizure detection from eeg signals using logistic model trees. Brain informatics, 3 (2), 93–100.
  54. Kalbkhani, H., & Shayesteh, M. G. (2017). Stockwell transform for epileptic seizure detection from eeg signals. Biomedical Signal Processing and Control , 38 , 108–118.
  55. Kaleem, M., Guergachi, A., & Krishnan, S. (2018). Patient-specific seizure detection in long-term eeg using wavelet decomposition. Biomedical Signal Processing and Control , 46 , 157–165.
  56. Karim, A. M., Güzel, M. S., Tolun, M. R., Kaya, H., & Çelebi, F. V. (2018). A new generalized deep learning framework combining sparse autoen- coder and taguchi method for novel data classi- fication and processing. Mathematical Problems in Engineering, 2018 .
  57. Karim, A. M., Güzel, M. S., Tolun, M. R., Kaya, H., & Çelebi, F. V. (2019). A new framework using deep auto-encoder and energy spectral density for medical waveform data classification and processing. Biocybernetics and Biomedical Engineering, 39 (1), 148–159.
  58. Karim, A. M., Karal, Ö., & Çelebi, F. (2018). A new automatic epilepsy serious detection method by using deep learning based on discrete wavelet transform. no, 4 , 15–18.
  59. Khan, H., Marcuse, L., Fields, M., Swann, K., & Yener, B. (2017). Focal onset seizure prediction using convolutional networks. IEEE Transac- tions on Biomedical Engineering, 65 (9), 2109–2118.
  60. Kitano, L. A. S., Sousa, M. A. A., Santos, S. D., Pires, R., Thome-Souza, S., & Campo, A. B. (2018). Epileptic seizure prediction from eeg signals using unsupervised learning and a polling-based decision process. In Artificial neural networks and machine learning–icann 2018: 27th international conference on artifi- cial neural networks, rhodes, greece, october 4- 7, 2018, proceedings, part ii 27 (pp. 117–126).
  61. Kumar, M., Pachori, R. B., & Acharya, U. R. (2017). Use of accumulated entropies for automated de- tection of congestive heart failure in flexible an- alytic wavelet transform framework based on short-term hrv signals. Entropy, 19 (3), 92.
  62. Lahmiri, S., & Shmuel, A. (2018). Accurate clas- sification of seizure and seizure-free intervals of intracranial eeg signals from epileptic pa- tients. IEEE Transactions on Instrumentation and Measurement, 68 (3), 791–796.
  63. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521 (7553), 436–444.
  64. Lee, H., & Kim, S. (2016). Black-box classifier inter- pretation using decision tree and fuzzy logic- based classifier implementation. International Journal of Fuzzy Logic and Intelligent Systems, 16 (1), 27–35.
  65. Lekshmy, H., Panickar, D., & Harikumar, S. (2022). Comparative analysis of multiple ma- chine learning algorithms for epileptic seizure prediction. In Journal of physics: Conference series (Vol. 2161, p. 012055).
  66. Li, M., Chen, W., & Zhang, T. (2017a). Automatic epileptic eeg detection using dt-cwt-based non- linear features. Biomedical Signal Processing and Control , 34 , 114–125.
  67. Li, M., Chen, W., & Zhang, T. (2017b). Classifi- cation of epilepsy eeg signals using dwt-based envelope analysis and neural network ensemble. Biomedical Signal Processing and Control , 31 ,357–365.
  68. Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16 (6), 321–332.
  69. Liedlgruber, M., Butz, K., Höller, Y., Kuchukhidze, G., Taylor, A., Thomschevski, A., . . . Uhl, A. (2019). Can spharm-based features from auto- mated or manually segmented hippocampi dis- tinguish between mci and tle? In Image anal- ysis: 21st scandinavian conference, scia 2019, norrköping, sweden, june 11–13, 2019, proceedings 21 (pp. 465–476).
  70. Lima, C. A., Coelho, A. L., Madeo, R. C., & Peres,
  71. S. M. (2016). Classification of electromyog- raphy signals using relevance vector machines and fractal dimension. Neural Computing and Applications, 27 , 791–804.
  72. Logesparan, L., Rodriguez-Villegas, E., & Casson,A. J. (2015). The impact of signal normal- ization on seizure detection using line length features. Medical & biological engineering & computing, 53 , 929–942.
  73. Lu, D., & Triesch, J. (2019). Residual deep convolutional neural network for eeg signal classification in epilepsy. arXiv preprint arXiv:1903.08100 .
  74. Luckett, P. H. (2018). Nonlinear methods for detec- tion and prediction of epileptic seizures (Un- published doctoral dissertation). University of South Alabama.
  75. Mannan, M. M. N., Kamran, M. A., & Jeong, M. Y. (2018). Identification and removal of physio- logical artifacts from electroencephalogram sig- nals: A review. Ieee Access, 6 , 30630–30652.
  76. Mello, R. F., & Ponti, M. A. (2018). Machine learning: a practical approach on the statisti- cal learning theory. Springer.
  77. Munsell, B., Wu, G., Fridriksson, J., Thayer, K., Mofrad, N., Desisto, N., . . . Bonilha, L. (2019). Relationship between neuronal network archi- tecture and naming performance in temporal lobe epilepsy: A connectome based approach using machine learning. Brain and Language, 193 , 45–57.
  78. Munsell, B. C., Wee, C.-Y., Keller, S. S., Weber, B., Elger, C., da Silva, L. A. T., . . . Bonilha, L. (2015). Evaluation of machine learning algo- rithms for treatment outcome prediction in pa- tients with epilepsy based on structural connec- tome data. Neuroimage, 118 , 219–230.
  79. Mursalin, M., Islam, S. S., Noman, M. K., & Al- Jumaily, A. A. (2019). Epileptic seizure clas- sification using statistical sampling and a novel feature selection algorithm. arXiv preprint arXiv:1902.09962 .
  80. Mutlu, A. Y. (2018). Detection of epileptic dysfunc- tions in eeg signals using hilbert vibration de- composition. Biomedical Signal Processing and Control , 40 , 33–40.
  81. Nair, P. P., Aghoram, R., Khilari, M. L., et al. (2021). Applications of artificial intelligence in epilepsy. International Journal of Advanced Medical and Health Research, 8 (2), 41.
  82. Natu, M., Bachute, M., Gite, S., Kotecha, K., & Vid- yarthi, A. (2022). Review on epileptic seizure prediction: machine learning and deep learning approaches. Computational and Mathematical Methods in Medicine, 2022 .
  83. Orellana, M., & Cerqueira, F. (2016). Personalized epilepsy seizure detection using random forest classification over one-dimension transformed eeg data. bioRxiv (070300).
  84. Park, C., Choi, G., Kim, J., Kim, S., Kim, T.-J., Min, K., . . . Chong, J. (2018). Epileptic seizure detection for multi-channel eeg with deep con- volutional neural network. In 2018 interna- tional conference on electronics, information, and communication (iceic) (pp. 1–5).
  85. Parvez, M. Z., & Paul, M. (2016). Seizure predic- tion using undulated global and local features. IEEE Transactions on Biomedical Engineering, 64 (1), 208–217.
  86. Patidar, S., & Panigrahi, T. (2017). Detection of epileptic seizure using kraskov entropy applied on tunable-q wavelet transform of eeg signals. Biomedical Signal Processing and Control , 34 , 74–80.
  87. Raghu, S., & Sriraam, N. (2018). Classification of focal and non-focal eeg signals using neighbor- hood component analysis and machine learning algorithms. Expert Systems with Applications, 113 , 18–32.
  88. Raghu, S., Sriraam, N., Temel, Y., Rao, S. V., & Kubben, P. L. (2020). Eeg based multi-class seizure type classification using convolutional neural network and transfer learning. Neural Networks, 124 , 202–212.
  89. Rojas, I., Joya, G., & Catala, A. (2015). Advances in computational intelligence: 13th international work-conference on artificial neural networks, iwann 2015, palma de mallorca, spain, june 10-12, 2015. proceedings, part i (Vol. 9094). Springer.
  90. Samson, K. (2018). ‘deep learning’model using ar- tificial intelligence predicts surgical success in intractable temporal lobe epilepsy. Neurology Today, 18 (23), 50–55.
  91. San-Segundo, R., Gil-Martín, M., D’Haro-Enríquez,L. F., & Pardo, J. M. (2019). Classification of epileptic eeg recordings using signal transforms and convolutional neural networks. Computers in biology and medicine, 109 , 148–158.
  92. Satapathy, S. K., Jagadev, A. K., & Dehuri, S. (2017a). Weighted majority voting based en- semble of classifiers using different machine learning techniques for classification of eeg sig- nal to detect epileptic seizure. Informatica (03505596), 41 (1).
  93. Satapathy, S. K., Jagadev, A. K., & Dehuri, S. (2017b). Weighted majority voting based en- semble of classifiers using different machine learning techniques for classification of eeg sig- nal to detect epileptic seizure. Informatica (03505596), 41 (1).
  94. Sazgar, M., & Young, M. G. (2019). Absolute epilepsy and eeg rotation review: Essentials for trainees. Springer.
  95. Selvakumari, R. S., Mahalakshmi, M., & Prashalee,P. (2019). Patient-specific seizure detection method using hybrid classifier with optimized electrodes. Journal of medical systems, 43 , 1– 7.
  96. Senders, J. T., Zaki, M. M., Karhade, A. V., Chang,B., Gormley, W. B., Broekman, M. L., . . . Ar- naout, O. (2018). An introduction and overview of machine learning in neurosurgical care. Acta neurochirurgica, 160 , 29–38.
  97. Sharif, B., & Jafari, A. H. (2017). Prediction of epileptic seizures from eeg using analysis of ictal rules on poincaré plane. Computer methods and programs in biomedicine, 145 , 11–22.
  98. Sharma, M., Sharma, P., Pachori, R. B., & Acharya, U. R. (2018). Dual-tree complex wavelet transform-based features for automated alco- holism identification. International Journal of Fuzzy Systems, 20 , 1297–1308.
  99. Shiao, H.-T., Cherkassky, V., Lee, J., Veber, B., Patterson, E. E., Brinkmann, B. H., & Wor- rell, G. A. (2016). Svm-based system for pre- diction of epileptic seizures from ieeg signal. IEEE Transactions on Biomedical Engineering, 64 (5), 1011–1022.
  100. Siddiqui, M. K., Islam, M. Z., & Kabir, M. A. (2019). A novel quick seizure detection and localiza- tion through brain data mining on ecog dataset. Neural Computing and Applications, 31 , 5595– 5608.
  101. Singh, A., Thakur, N., & Sharma, A. (2016). A re- view of supervised machine learning algorithms. In 2016 3rd international conference on com- puting for sustainable global development (indi- acom) (pp. 1310–1315).
  102. Singh, K., & Malhotra, J. (2019). Iot and cloud com- puting based automatic epileptic seizure detec- tion using hos features based random forest classification. Journal of Ambient Intelligence and Humanized Computing, 1–16.
  103. Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and com- puting, 14 , 199–222.
  104. Stelzle, D., Schmidt, V., Ngowi, B. J., Matuja, W., Schmutzhard, E., & Winkler, A. S. (2021). Life- time prevalence of epilepsy in urban tanzania–a door-to-door random cluster survey. Eneurolog- icalsci , 24 , 100352.
  105. Subasi, A., Kevric, J., & Abdullah Canbaz, M. (2019). Epileptic seizure detection using hybrid machine learning methods. Neural Computing and Applications, 31 , 317–325.
  106. Sui, L., Zhao, X., Zhao, Q., Tanaka, T., & Cao, J. (2019). Localization of epileptic foci by using convolutional neural network based on ieeg. In Artificial intelligence applications and innova- tions: 15th ifip wg 12.5 international conference, aiai 2019, hersonissos, crete, greece, may 24–26, 2019, proceedings 15 (pp. 331–339).
  107. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
  108. Talathi, S. S., & Vartak, A. (2015). Improving per- formance of recurrent neural network with relu nonlinearity. arXiv preprint arXiv:1511.03771 . Tharayil, J. J., Chiang, S., Moss, R., Stern, J. M., Theodore, W. H., & Goldenholz, D. M. (2017).
  109. A big data approach to the development of mixed-effects models for seizure count data. Epilepsia, 58 (5), 835–844.
  110. Tian, X., Deng, Z., Ying, W., Choi, K.-S., Wu, D.,Qin, B., . . . Wang, S. (2019). Deep multi-view feature learning for eeg-based epileptic seizure detection. IEEE Transactions on Neural Sys- tems and Rehabilitation Engineering, 27 (10),
  111. 1962–1972.
  112. Tiwari, A. K., Pachori, R. B., Kanhangad, V., & Pan- igrahi, B. K. (2016). Automated diagnosis of epilepsy using key-point-based local binary pat- tern of eeg signals. IEEE journal of biomedical and health informatics, 21 (4), 888–896.
  113. Torse, D. A., Desai, V., & Khanai, R. (2017). Eeg signal classification into seizure and non-seizure class using empirical mode decomposition and artificial neural network. IJIR, 3 (1), 2454–1362.
  114. Tsiouris, K. M., Markoula, S., Konitsiotis, S., Kout- souris, D. D., & Fotiadis, D. I. (2018). A robust unsupervised epileptic seizure detection methodology to accelerate large eeg database evaluation. Biomedical Signal Processing and Control , 40 , 275–285.
  115. Türk, Ö., & Özerdem, M. S. (2019). Epilepsy de- tection by using scalogram based convolutional neural network from eeg signals. Brain sci- ences, 9 (5), 115.
  116. Tzimourta, K. D., Tzallas, A. T., Giannakeas, N., As- trakas, L. G., Tsalikakis, D. G., Angelidis, P., & Tsipouras, M. G. (2019). A robust methodol- ogy for classification of epileptic seizures in eeg signals. Health and Technology , 9 , 135–142.
  117. Usman, S. M., & Hassan, A. (2018). Efficient predic- tion and classification of epileptic seizures using eeg data based on univariate linear features. J. Comput., 13 (6), 616–621.
  118. Usman, S. M., Usman, M., & Fong, S. (2017a). Epileptic seizures prediction using machine learning methods. Computational and mathe- matical methods in medicine, 2017 .
  119. Usman, S. M., Usman, M., & Fong, S. (2017b). Epileptic seizures prediction using machine learning methods. Computational and mathe- matical methods in medicine, 2017 .
  120. Wang, D., Ren, D., Li, K., Feng, Y., Ma, D., Yan, X., & Wang, G. (2018). Epileptic seizure detection in long-term eeg recordings by us- ing wavelet-based directed transfer function. IEEE Transactions on Biomedical Engineering, 65 (11), 2591–2599.
  121. Wang, J., Li, Y., Wang, Y., & Huang, W. (2018). Multimodal data and machine learning for de- tecting specific biomarkers in pediatric epilepsy patients with generalized tonic-clonic seizures. Frontiers in neurology , 9 , 1038.
  122. Wang, X., Gong, G., Li, N., & Qiu, S. (2019). Detection analysis of epileptic eeg using a novel random forest model combined with grid search optimization. Frontiers in human neuroscience, 13 , 52.
  123. Wu, M., Qin, H., Wan, X., & Du, Y. (2021). Hfo detection in epilepsy: a stacked denoising au- toencoder and sample weight adjusting factors- based method. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29 , 1965–1976.
  124. Yan, B., Wang, Y., Li, Y., Gong, Y., Guan, L., & Yu,S. (2016). An eeg signal classification method based on sparse auto-encoders and support vec- tor machine. In 2016 ieee/cic international con- ference on communications in china (iccc) (pp. 1–6).
  125. Yang, Y., Zhou, M., Niu, Y., Li, C., Cao, R., Wang, B., . . . Xiang, J. (2018). Epileptic seizure pre- diction based on permutation entropy. Fron- tiers in computational neuroscience, 12 , 55.
  126. Yao, X., Cheng, Q., & Zhang, G.-Q. (2019a). Au- tomated classification of seizures against non- seizures: A deep learning approach. arXiv preprint arXiv:1906.02745 .
  127. Yao, X., Cheng, Q., & Zhang, G.-Q. (2019b). A novel independent rnn approach to classification of seizures against non-seizures. arXiv preprint arXiv:1903.09326 .
  128. Yuan, Y., Xun, G., Ma, F., Suo, Q., Xue, H., Jia, K., & Zhang, A. (2018). A novel channel-aware at- tention framework for multi-channel eeg seizure detection via multi-view deep learning. In 2018 ieee embs international conference on biomedi- cal & health informatics (bhi) (pp. 206–209).
  129. Yuan, Y., Xun, G., Suo, Q., Jia, K., & Zhang, A. (2019). Wave2vec: Deep representation learn- ing for clinical temporal data. Neurocomputing, 324 , 31–42.
  130. Zhang, T., Chen, W., & Li, M. (2017). Ar based quadratic feature extraction in the vmd domain for the automated seizure detection of eeg us- ing random forest classifier. Biomedical Signal Processing and Control , 31 , 550–559.
  131. Zhang, Y., Zhang, Y., Wang, J., & Zheng, X. (2015). Comparison of classification methods on eeg signals based on wavelet packet decomposition. Neural Computing and Applications, 26 , 1217– 1225.
  132. Zhao, Y. (2017). Addressing bias and subjectivity in machine learning (Unpublished doctoral disser- tation). Tufts University.
Index Terms

Computer Science
Information Sciences

Keywords

EEG Machine Learning Seizure