CFP last date
20 December 2024
Reseach Article

Modeling an Adaptive e-Learning System for Improved Learning Performances

by Ibam E. Onwuka, Ibrahim I. Makinde, Agbonifo O. Catherine, Adewale O. Sunday
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 185 - Number 13
Year of Publication: 2023
Authors: Ibam E. Onwuka, Ibrahim I. Makinde, Agbonifo O. Catherine, Adewale O. Sunday
10.5120/ijca2023922755

Ibam E. Onwuka, Ibrahim I. Makinde, Agbonifo O. Catherine, Adewale O. Sunday . Modeling an Adaptive e-Learning System for Improved Learning Performances. International Journal of Computer Applications. 185, 13 ( Jun 2023), 8-19. DOI=10.5120/ijca2023922755

@article{ 10.5120/ijca2023922755,
author = { Ibam E. Onwuka, Ibrahim I. Makinde, Agbonifo O. Catherine, Adewale O. Sunday },
title = { Modeling an Adaptive e-Learning System for Improved Learning Performances },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2023 },
volume = { 185 },
number = { 13 },
month = { Jun },
year = { 2023 },
issn = { 0975-8887 },
pages = { 8-19 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume185/number13/32754-2023922755/ },
doi = { 10.5120/ijca2023922755 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:25:56.710807+05:30
%A Ibam E. Onwuka
%A Ibrahim I. Makinde
%A Agbonifo O. Catherine
%A Adewale O. Sunday
%T Modeling an Adaptive e-Learning System for Improved Learning Performances
%J International Journal of Computer Applications
%@ 0975-8887
%V 185
%N 13
%P 8-19
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In majority of the online learning systems in use today, lack proper integration of adaptive, collaborative, personalized and ubiquitous concepts in their design and implementation. Integration of these basic concepts in online learning systems will enable adaptation, individualization, and collaboration of learning resources to learners’ preferences, with an added advantage of accessibility to online resources anywhere and any time. Hence, the research proposes an Adaptive E-Learning System (AES) model that incorporates activities sequencing in a personalised, adaptive, collaborative and ubiquitous learning environment. The system model consists of the system (software) architectural diagram and mathematical model of activity sequence. The design is presented using the UML activity diagram and the class diagram. The full implementation of the system is currently being carried out and is being tested with real life cases..

References
  1. Agbonifo O. C. and Ibam E. O. (2015). ‘A Cognitive Load Theory-Based Framework for Designing an E-Learning Environment’, African Journal. of Comp & ICTs. 8(3) [online]. Available at: https://afrjcict.net/wp-content/uploads/2017/08/vol-8-no-3-sept-2015ppi-245.pdf
  2. Ahmed, E.R. (2006). Introduction to GPS: The global positioning system, Second edition. Boston MA: Artech House Publishers.
  3. Almohammadi, K. & Hagras, H. (2013). ‘An Interval Type-2 Fuzzy Logic Based System for Customised Knowledge Delivery within Pervasive E-Learning Platforms’, Proceeding of IEEE International Conference on Systems. Man, Cybernetics, 2872-2879
  4. Andharini, D. C., Ari, B., Eka, M. S. & Yeni, K. (2015). ‘An adaptive e-learning application architecture based on IEEE LTSA reference model’, TELKOMNIKA, 13(1) [online]. Available at: DOI: 10.12928/TELKOMNIKA.v13i1.112 (Accessed: 15 March 2020)
  5. Bachari, E. E., Abdelwahed, E. & Adnani, M. E. (2010). ‘Design of an adaptive e-learning model based on learner’s personality’, Ubiquitous Computing and Communication Journal, 5(3), 1-8
  6. Calimag, J. N., Mugel, P. A., Conde, R. S. & Aquino, L. B. (2014). ‘Ubquitous learning environment using android mobile application’, International Journal of Research in Engineering & Technology, 2(2) [online]. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.11.681.508&rep=rep1&type=pdf
  7. Chu, H., Hwang, G. & and Tsai, C. (2010). ‘A knowledge engineering approach to developing mindtools for context-aware ubiquitous learning’, Journal Computers & Education, 54(1), 289-297
  8. Dey, A.K. (2000). ‘Providing architectural support for building context-aware applications’. PhD Thesis. Georgia Institute of Technology, USA
  9. Felder, R. M. & Silverman, L. K. (1988) ‘Learning Styles and Teaching Styles in Engineering Education’, Journal of Engineering Education, 78(7), 674-681.
  10. Hwang, G. H., Chen, B., Chu, H. C. & Cheng, Z. S. (2012). ‘Development of a Web 2.0-based ubiquitous learning platform for schoolyard plant identification’, Proceeding of IEEE International Conference on Wireless, Mobile, and Ubiquitous Technology in Education, Japan, 259-263
  11. Kupper, A. (2005). ‘Location-based services: Fundamentals and operation’, Wiley, Chichester, p1-14, p123-154.
  12. Ogata, H., & Yano, Y. (2004). ‘Context-aware support for computer supported ubiquitous learning’, Proceedings of the Second IEEE International Workshop on Wireless and Mobile Technologies in Education. Los Alamitos: IEEE Computer Society, 27–34.
  13. Pham, Q. D. & Adina, M. F. (2013). ‘An Adaptation to learners’ learning styles in a multi agent e-learning system’, Internet Learning, 2(1) [online]. Available at: https://ipsonet.org/sin-categoria/volume-2-number-1-spring-2013/
  14. Rikala, J. & Kankaanranta, M. (2012). ‘The Use of Quick Response Codes in the Classroom’, [online]. Available at: http://ceur-ws.org/Vol-955/papers/paper_40.pdf on 14/09/2017
  15. Rodrigues, J. J., Sousa, D. V. & Torre, I. (2012). ‘A Mobile Learning Content-independent Versatile Ubiquitous System (CiVUS)’, Learning with Mobile Technologies, Handheld Devices, and Smart Phones: Innovative Methods, 21-36.
  16. Rogers, Y., Price, S., Randell, C., Stanton, F. D., Weal, M. & Fitzpatrick, G. (2005). ‘Ubi-learning integrates indoor and outdoor experiences’, Communications of the ACM, 48(1), [online]. Available at: https://dl.acm.org/doi/abs/10.1145/1039539.1039570
  17. Ruiz D., Ureña J., García J.C., Villadangos J.M., Pérez M.C. & García E. (2013). ‘Efficient Trilateration Algorithm using Differences of Time of Arrival’, Sens. Actuators A Phys.;193 [online]. Available at: doi: 10.1016/j.sna.2012.12.021.
  18. Sadoun, B. & Al-Bayari, O. (2007). ‘Location based services using geographical information systems’, Computer Communications, 30(16) [online]. Available at: https://doi.org/10.1016/j.comcom.2007.05.059
  19. Setiya, R. & Gaur, A. (2012). ‘Location fingerprinting of mobile terminals by using Wi-Fi device’, International Journal of Advanced Research in Computer Engineering & Technology, 1(4), [online]. Available at: http://ijarcet.org/wp-content/uploads/IJARCET-VOL-1-ISSUE-4-311-314.pdf
  20. Stylios, C. D. & Groumpos, P. P. (1999). ‘Mathematical Formulation of Fuzzy Cognitive Maps’, Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99), 2251-2261.
  21. Sweta, S, & Lal, K. (2016). ‘Learner Model for Automatic Detection of Learning Style Using FCM in Adaptive E-Learning System’, IOSR Journal of Computer Engineering, 1(18) [online]. Available at: https://www.iosrjournals.org/iosr-jce/papers/Vol18-issue2/Version-4/C1802041824.pdf
  22. Yang, S. J. (2006) ‘Context Aware Ubiquitous Learning Environments for Peer-to-Peer Collaborative Learning’, Educational Technology & Society, 9 (1) [online]. Available at: http://www.ifets.info/journals/9_1/16.pdf
  23. Zhao, X., Anma, F., Ninomiya, T. & Okamoto, T. (2008) ‘Personalized Adaptive Content System for Context-Aware Mobile Learning’, International Journal of Computer Science and Network Security (IJCSNS), 8(8) [online]. Available at: http://paper.ijcsns.org/07_book/200808/20080823.pdf
Index Terms

Computer Science
Information Sciences

Keywords

Personalised learning Ubiquitous Learning Affective Learning Context-Aware.