CFP last date
20 December 2024
Reseach Article

Implementation of Machine Learning using Fastai for Image Classification on the Automatic Waste Sorter Prototype

by Muchamad Eris Rizqul Ulum, Joko Purnomo, Elfitrin Syahrul, Erfiana Wahyuningsih
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 7
Year of Publication: 2022
Authors: Muchamad Eris Rizqul Ulum, Joko Purnomo, Elfitrin Syahrul, Erfiana Wahyuningsih
10.5120/ijca2022922026

Muchamad Eris Rizqul Ulum, Joko Purnomo, Elfitrin Syahrul, Erfiana Wahyuningsih . Implementation of Machine Learning using Fastai for Image Classification on the Automatic Waste Sorter Prototype. International Journal of Computer Applications. 184, 7 ( Apr 2022), 1-8. DOI=10.5120/ijca2022922026

@article{ 10.5120/ijca2022922026,
author = { Muchamad Eris Rizqul Ulum, Joko Purnomo, Elfitrin Syahrul, Erfiana Wahyuningsih },
title = { Implementation of Machine Learning using Fastai for Image Classification on the Automatic Waste Sorter Prototype },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2022 },
volume = { 184 },
number = { 7 },
month = { Apr },
year = { 2022 },
issn = { 0975-8887 },
pages = { 1-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number7/32338-2022922026/ },
doi = { 10.5120/ijca2022922026 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:20:49.723859+05:30
%A Muchamad Eris Rizqul Ulum
%A Joko Purnomo
%A Elfitrin Syahrul
%A Erfiana Wahyuningsih
%T Implementation of Machine Learning using Fastai for Image Classification on the Automatic Waste Sorter Prototype
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 7
%P 1-8
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Indonesia is one of the countries that contribute to waste in the world. Waste management is one way to reduce waste generated. Sensing the type of waste with a camera using computer vision is one method to take waste images. Using this method can create an automatic waste sorting system. The scattered waste is mixed of many types, including cardboard, glass, metal, paper, and plastic. This research uses the machine learning Convolutional Neural Network (CNN) Model to classify waste. The prototype uses a notebook to process classification and sends the classification to Arduino with Firmata protocol. The error rate value obtained from the train was 0.096708. while the accuracy value of the prototype is 84%. in this research, to be able to apply waste separation technology automatically to the waste, it can use fastbook when using a server computer and Arduino to control the device prototype.

References
  1. Balevic, and Ana. (2009). Parallel Vairable-Length Encoding on GPGPUs, HPPC 2009 – the 3rd Workshop on Highly Parallel Processing on a Chip, pp. 19.
  2. Banzi, M. (2008). Gettting Started with Arduino. O'Reilly
  3. CNN Indonesia. (2018). Riset: 24 Persen Sampah di Indonesia Masih Tak Terkelola. [Online] Available at https://www.cnnindonesia.com/gaya-hidup/20180425101643-282-293362/riset-24-persen-sampah-di-indonesia-masih-tak-terkelola
  4. El zaar, A., Aoulalay, A., Benaya, N., El mhouti, A., Massar, M., and El allati. (2020). A Deep Learning Approach to Manage and Reduce Plastic Waste in the Oceans. E3S Web of Conferences , 336
  5. Gollapudi, S. (2019) Learn Computer Vision Using OpenCV. Apress
  6. Hijazi, S. Kumar, R. and Rowen, C. (2015). Using Convolutional Neural Network for Image Recognition. Cadence
  7. Hilal, A. and Manan, S. (2015) PEMANFAATAN MOTOR SERVO SEBAGAI PENGGERAK CCTV UNTUK MELIHAT ALAT-ALAT MONITOR DAN KONDISI PASIEN DI RUANG ICU. Gema Teknologi. vol. 17, no. 2.
  8. Howard, J. and Gugger, S. (2020). Deep Learning for coders with fastai & pytorch. O’REILLY
  9. Howard, J. and Gugger, S. (2020). fastai: A Layered API for Deep Learning. arXiv e-prints.[Online].Available at: https://arxiv.org/abs/2002.04688 [Accessed 8 Februari 2022]
  10. Kriesel, D, (2005). A Brief Introduction to Neural Network. Drkriesel.com
  11. McCulloch, W, S. and Pitts, W. (1943). A Logical Calculus Of The Ideas Immanent In Nervous Activity. Bulletin of Mathematical Biophysics. Vol 5
  12. Nugroho, P, A. Fenriana, I. and Arijanto, R. (2020). Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia. Jurnal Algor. 2 – 1
  13. Pratiwi, H. Satyaputra, A. and Ariwibowo, A. (2017 ). Purwarupa Sistem Pendataan dan Pengendalian Perangkat Laboratorium Dalam Pengembangan Smart Campus. JURNAL RESTI. Vol.1 No.1 50-57
  14. Puspita, S. (2018). Indonesia Penyumbang Sampah Plastic Terbesar Kedua di Dunia. [Online] Available at https://megapolitan.kompas.com/read/2018/08/19/21151811/indonesia-penyumbang-sampah-Plastic-terbesar-kedua-di-dunia
  15. Rajagede, A, R. (2018). Modul Cnn With Pytorch 0.4 [ONLINE]. Available at https://machinelearning.mipa.ugm.ac.id/wp-content/uploads/sites/374/2018/07/Pytorch-CNN-1.pdf [Accessed 12 April 2012].
  16. Stephen. Raymond, and Santoso, H. (2019). Aplikasi Convolution Neural Network Untuk Mendeteksi Jenis-Jenis Sampah. Explore – Jurnal Sistem Informasi dan Telematika
  17. Suartika E, I, W. Wijaya, A, Y. and Soelaiman, R. (2016). Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101. JURNAL TEKNIK ITS. VOL. 5-1
  18. Sunarto, E, C. and Yulianti, B. (2018). Rancang bangun Prototipe Alat Angkut Helikopter Berbasis Arduino. TESLA. Vol 20-2
  19. Touretzky, D, S. and Pomerleau, D, A. (1989). What’s Hidden in the Hidden Layers. BYTE
  20. Yang, M. and Thung, G. (2016). Classification of Trash for Recyclability Status. Cs229.stanford.edu.[online].Available at: http://cs229.stanford.edu/proj2016/report/ThungYang-ClassificationOfTrashForRecyclabilityStatus-report.pdf
Index Terms

Computer Science
Information Sciences

Keywords

Fastbook Fastai Jupyter Notebook Convolution Neural Network OpenCV PyFirmata Python