CFP last date
20 January 2025
Reseach Article

Sentiment Analysis and Trend Detection of Tweets using Machine Learning Techniques

by Najlaa Musaad Alsadan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 51
Year of Publication: 2023
Authors: Najlaa Musaad Alsadan
10.5120/ijca2023922633

Najlaa Musaad Alsadan . Sentiment Analysis and Trend Detection of Tweets using Machine Learning Techniques. International Journal of Computer Applications. 184, 51 ( Mar 2023), 1-6. DOI=10.5120/ijca2023922633

@article{ 10.5120/ijca2023922633,
author = { Najlaa Musaad Alsadan },
title = { Sentiment Analysis and Trend Detection of Tweets using Machine Learning Techniques },
journal = { International Journal of Computer Applications },
issue_date = { Mar 2023 },
volume = { 184 },
number = { 51 },
month = { Mar },
year = { 2023 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number51/32648-2023922633/ },
doi = { 10.5120/ijca2023922633 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:24:33.092156+05:30
%A Najlaa Musaad Alsadan
%T Sentiment Analysis and Trend Detection of Tweets using Machine Learning Techniques
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 51
%P 1-6
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Social media has become the most important source for decision-making procedures in many areas due to its wide applications. People all over the world use their accounts to express personal views, experiences and opinions on diverse topics. Tweets on Twitter are mainly based on the public opinion on a product, event or topic and thus hold large volumes of unprocessed data. Researchers classify and cluster twitter data for different purposes such as Sentiment Analysis, topic detection, topic tracking, culture propagation, opinion mining and others. Analysis of this data is important and difficult due to the size of the dataset. In this review article, we cover most of research articles in tweets classification and clustering. We also address machine learning algorithms for analyzing the data.

References
  1. Manzoor, U., Baig, S. A., Hashim, M., & Sami, A.,” Impact of social media marketing on consumer’s purchase intentions: the mediating role of customer trust”, 2, 2020., International Journal of Entrepreneurial Research, Vol. 3, pp. 41-48.
  2. Appel, G., Grewal, L., Hadi, R., & Stephen, A. T. 1, “The future of social media in marketing”, 2020, Journal of the Academy of Marketing Science, Vol. 48, pp. 79-95.
  3. Hernández-Fuentes, A., & Monnier, A., “Twitter as a Source of Information? Practices of Journalists Working for the French National Press” ,5, 2020, Journalism Practice, Vol. 16, pp. 920-937.
  4. Erskine, N., & Hendricks, S., “The use of Twitter by medical journals: systematic review of the literature”, 7, 2021, Journal of medical Internet research, Vol. 23, p. e26378.
  5. Valle-Cruz, D., Fernandez-Cortez, V., López-Chau, A., & Sandoval-Almazán, R. 1, “Does twitter affect stock market decisions? financial sentiment analysis during pandemics: A comparative study of the h1n1 and the covid-19 periods”, 2022, Cognitive computation, Vol. 14, pp. 372-387.
  6. Khan, A. Alsaeedi and M. Z., “A study on sentiment analysis techniques of Twitter data” , 2, 2019, International Journal of Advanced Computer Science and Applications, Vol. 10, pp. 361–374.
  7. Mujahid, M., Lee, E.,Rustam, F. and Washington, P.B.,Ullah, S., Reshi, A.A., Ashraf, I., “Sentiment Analysis and Topic Modeling on Tweets about Online Education during COVID-19”, 18, 2021, Applied Sciences, Vol. 11, p. 8438.
  8. R. Jain, S. Bawa, and S. Sharma., “Sentiment Analysis of COVID-19 Tweets by Machine Learning and Deep Learning Classifiers”, Singapore: Springer, Singapore, 2022, Advances in Data and Information sciences, pp. 329–339.
  9. Chandrasekaran G, Hemanth J., “Deep learning and TextBlob based sentiment analysis for coron-avirus (COVID-19) using twitter data “, 1, 2022, International Journal on Artificial Intelligence Tools, Vol. 31, p. 2250011.
  10. Singh, C., et al., “A Deep Learning Approach for Sentiment Analysis of COVID-19 Reviews”, 8, 2022, Applied Sciences, Vol. 12, p. 3709.
  11. A. P., & Chiplunkar, N. N. , “A new big data approach for topic classification and sentiment analysis of Twitter data. Rodrigues”, 2, 2022, Evolutionary Intelligence, Vol. 15, pp. 877-887.
  12. A. P., & Chiplunkar, N. N., “Twitter sentiment analysis using machine learning for product evaluation”, Coimbatore, India : s.n., 2020. Proc. 5th Int. Conf. on Inventive Computation Technologies. pp. 181–.
  13. J. Samuel, G. G. M. N. Ali, M. M. Rahman, E. Esawi, and Y. Samuel,. ,”COVID-19 Public Sentiment Insights and Machine Learning for Tweets Classification”, 413, 2020, Information, Vol. 1.
  14. Ahuja, R., Chug, A., Kohli, S., Gupta, S., & Ahuja, P., “The impact of features extraction on the sentiment analysis”, 2019, Procedia Computer Science, Vol. 152, pp. 341-348.
  15. Alharbi, A. S. M., & de Doncker, E., ”Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information”, 2019, Cognitive Systems Research, Vol. 54, pp. 50-61.
  16. Valencia, F., Gómez-Espinosa, A., & Valdés-Aguirre, B., “Price movement prediction of cryptocurrencies using sentiment analysis and machine learning”, 6, 2019,  Entropy, Vol. 21, p. 589.
  17. Najafi, A., Gholipour-Shilabin, A., Dehkharghani, R., Mohammadpur-Fard, A., & Asgari-Chenaghlu, M., “ComStreamClust: a Communicative Multi-Agent Approach to Text Clustering in Streaming Data”, 2022, Annals of Data Science, pp. 1-23.
  18. Alomari, E., Mehmood, R., & Katib, I., “Road Traffic Event Detection Using Twitter Data,Machine Learning, and Apache Spark”, s.l. : IEEE, 2019, In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) , pp. 1888-1895.
  19. Asgari-Chenaghlu, M., Nikzad-Khasmakhi, N., & Minaee, S., “Covid-Transformer: Detecting Trending Topics on Twitter Using Universal Sentence Encoder”, 2020, https://arxiv.org/pdf/2009.03947.pdf.
  20. Hernandez-Mendoza, M., Aguilera, A., Dongo, I., Cornejo-Lupa, J., & Cardinale, Y., “Credibility Analysis on Twitter Considering Topic Detection”, 18, 2022, Applied Sciences, Vol. 12, p. 9081.
  21. Khan, H. U., Nasir, S., Nasim, K., Shabbir, D., & Mahmood, A. , “Twitter trends: a ranking algorithm analysis on real time data”,2021, 113990, s.l. : Expert Systems with Applications, Vol. 164.
  22. Octaria, O., Manongga, D., Iriani, A., Purnomo, H. D., & Setyawan, I., “Mining Opinion Based on Tweets about Student Exchange with Tweepy and TextBlob”, 2022, In 2022 9th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 102-106.
  23. Chaudhri, A. A., Saranya, S. S., & Dubey, S., “Implementation paper on analyzing COVID-19 vaccines on twitter dataset using tweepy and text blob”, 2021,  Annals of the Romanian Society for Cell Biology, pp. 8393-8396.
  24. Chandralekha, E., Rama, P., Benjamin, M. I. S. W., & Kumar, K. A, “Sentiment Analysis of Corona Vaccination on Twitter Data using Machine Learning Techniques”, 2022, In 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), IEEE, pp. 708-712.
  25. Manguri, K. H., Ramadhan, R. N., & Amin, P. R. M., “Twitter sentiment analysis on worldwide COVID-19 outbreaks”, 2020,  Kurdistan Journal of Applied Research, pp. 54-65.
  26. Reynard, D., & Shirgaokar, M., “Harnessing the power of machine learning: Can Twitter data be useful in guiding resource allocation decisions during a natural disaster? Transportation research part D: Transport and environment”, 2019, Vol. 77, pp. 449-463.
  27. Lad, S., Mane, G., Padwal, A., & Dixit, M. 1, “Machine learning based sentiment analysis of Twitter data”,2018, In AIP Conference Proceedings, AIP Publishing LLC, Vol. 2494, p. 050007.
  28. Zheng, X., & Sun, A., “Collecting event‐related tweets from twitter stream”, 2, 2019, journal of the Association for Information Science and Technology, Vol. 70, pp. 176-186.
  29. Boon-Itt, S., & Skunkan, Y., “Public perception of the COVID-19 pandemic on Twitter: sentiment analysis and topic modeling study”, 4, 2020, jMIR Public Health and Surveillance, Vol. 6, p. e21978.
  30. de Arriba Serra, A., Oriol Hilari, M., & Franch Gutiérrez, J., “Applying sentiment analysis on Spanish tweets using BETO”, sep. 2021, international Conference of the Spanish Society for Natural Language Processing: Málaga, Spain : CEUR-WS. Org., In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2021): co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2021), pp. 1-8.
  31. Kharde, V., & Sonawane, P., “Sentiment analysis of twitter data: a survey of techniques”, 11, april 2016, International Journal of Computer Applications , Vol. 139, pp. 975 – 8887.
  32. Resyanto, F., Sibaroni, Y., & Romadhony, A., “Choosing the most optimum text preprocessing method for sentiment analysis: Case: iPhone Tweets”, s.l. : IEEE, 2019. 2019 Fourth International Conference on Informatics and Computing (ICIC). pp. 1-5.
  33. Saputra, D. D., Gata, W., Wardhani, N. K., Parthama, K. S., Setiawan, H., Budilaksono, S., ... & Novianti, D., “Optimization Sentiments of Analysis from Tweets in myXLCare using Naïve Bayes Algorithm and Synthetic Minority Over Sampling Technique Method”, 1 Feb. ,2020, s.l. : IOP Publishing In Journal of Physics: Conference Series. Vol. 1471 no. 1, p. 012014.
  34. Matt K., Yu S., Nicholas K., and Kilian W., “From word embeddings to document distances”, 2015, s.l. : in International conference on machine learning, pp. 957–966.
  35. Algorithms for Clustering Data; Prentice-Hall. Jain, A.K. and Dubes, R.C. s.l. : Upper Saddle River, NJ, USA, 1988.
  36. Modeling Topics Technical Report; Carnegie Melon University: Pittsburgh,. Gimpel, K. s.l. : PA, USA, 2006.
  37. An introduction to latent semantic analysis. Landauer, T.K., Foltz, P.W. and Laham, D. s.l. : Discourse Process. 1998, 25, 259–284.
  38. Nonnegative Matrix Factorization: A Comprehensive Review. Wang, Y.X. and Zhang, Y.J. s.l. : IEEE Trans. Knowl. Data Eng. , 2012, Vols. 25, 1336–1353.
Index Terms

Computer Science
Information Sciences

Keywords

Sentiment Analysis Trend Detection tweets classification tweets clustering.