CFP last date
20 December 2024
Reseach Article

A Comprehensive Review on Indian Sign Language Recognition System using Vision based Approaches

by Poornima B.V., Srinath S.
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 43
Year of Publication: 2023
Authors: Poornima B.V., Srinath S.
10.5120/ijca2023922548

Poornima B.V., Srinath S. . A Comprehensive Review on Indian Sign Language Recognition System using Vision based Approaches. International Journal of Computer Applications. 184, 43 ( Jan 2023), 52-58. DOI=10.5120/ijca2023922548

@article{ 10.5120/ijca2023922548,
author = { Poornima B.V., Srinath S. },
title = { A Comprehensive Review on Indian Sign Language Recognition System using Vision based Approaches },
journal = { International Journal of Computer Applications },
issue_date = { Jan 2023 },
volume = { 184 },
number = { 43 },
month = { Jan },
year = { 2023 },
issn = { 0975-8887 },
pages = { 52-58 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number43/32601-2023922548/ },
doi = { 10.5120/ijca2023922548 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:23:56.713083+05:30
%A Poornima B.V.
%A Srinath S.
%T A Comprehensive Review on Indian Sign Language Recognition System using Vision based Approaches
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 43
%P 52-58
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A sign language recognition system is a method in which a computer automatically recognizes the sign language motions and converts them into machine or human readable text or speech. Many researchers have proposed different algorithms for identifying the static and dynamic Indian sign language (ISL) gestures. This review presents a qualitative and a comprehensive study of the different approaches like digital image processing, machine learning and deep learning methods used for recognition of gestures. Research publications from the past 10 years have been collected from electronic databases like scopus, google scholar and researchgate for the review and the details of the publicly available dataset repositories are highlighted. This review helps the researchers, academicians and the technology oriented people to understand the importance of different technologies used to recognize the gestures automatically which in turn benefits the speech and hearing impaired people. The challenges present in ISL recognition, the short comings of the existing systems and the future research directions in order to improve the recognition rate is explained in this paper.

References
  1. Suharjito, R. Anderson, F. Wiryana, M. C. Ariesta, and G. P. Kusuma, “Sign Language Recognition Application Systems for Deaf-Mute People: A Review Based on Input-Process-Output,” Procedia Comput. Sci., vol. 116, pp. 441–448, 2017, doi: 10.1016/j.procs.2017.10.028.
  2. D. Deora and N. Bajaj, “Indian sign language recognition,” Proc. 2012 1st Int. Conf. Emerg. Technol. Trends Electron. Commun. Networking, ET2ECN 2012, 2012, doi: 10.1109/ET2ECN.2012.6470093.
  3. V. Adewale and A. Olamiti, “Conversion of Sign Language To Text And Speech Using Machine Learning Techniques,” J. Res. Rev. Sci., vol. 5, no. 1, 2018, doi: 10.36108/jrrslasu/8102/50(0170).
  4. A. Bhattacharya, V. Zope, K. Kumbhar, P. Borwankar, and A. Mendes, “Classification of Sign Language Gestures using Machine Learning,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 8, no. 12, pp. 97–103, 2020, doi: 10.17148/IJARCCE.2019.81219.
  5. M. Jayaraju, “Indian Sign Language Recognition System-Review,” 2014.
  6. M. Saraswat and K. V Arya, “in an Image Sequence of Non-manual Indian,” pp. 267–275.
  7. K. Shenoy, T. Dastane, V. Rao, and D. Vyavaharkar, “Real-time Indian Sign Language (ISL) Recognition,” 2018 9th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2018, pp. 1–9, 2018, doi: 10.1109/ICCCNT.2018.8493808.
  8. Sharma, S., & Singh, S. (2022). Recognition of Indian Sign Language (ISL) Using Deep Learning Model. Wireless Personal Communications, 123(1), 671–692. https://doi.org/10.1007/s11277-021-09152-1
  9. A. Divkar, R. Bailkar, and D. C. S. Pawar, “Gesture Based Real-time Indian Sign Language Interpreter,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 3307, pp. 387–394, 2021, doi: 10.32628/cseit217374.
  10. V. Adithya and R. Rajesh, “Hand gestures for emergency situations: A video dataset based on words from Indian sign language,” Data Br., vol. 31, p. 106016, 2020, doi: 10.1016/j.dib.2020.106016.
  11. K. Mistree, D. Thako, and B. Bhatt, “Towards Indian Sign Language Sentence Recognition using Insignvid: Indian Sign Language Video Dataset,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 8, pp. 697–707, 2021, doi: 10.14569/IJACSA.2021.0120881.
  12. M. Suneetha, P. M.V.D., and K. P.V.V., “Multi-view motion modelled deep attention networks (M2DA-Net) for video based sign language recognition,” J. Vis. Commun. Image Represent., vol. 78, no. April, p. 103161, 2021, doi: 10.1016/j.jvcir.2021.103161.
  13. R. B. Mapari and G. U. Kharat, “Indian Sign Language Alpha-Numeric Character Classification using Neural Network,” vol. 02, no. 06, pp. 1–8, 2016.
  14. M. Geetha and P. V. Aswathi, “Dynamic gesture recognition of Indian sign language considering local motion of hand using spatial location of Key Maximum Curvature Points,” 2013 IEEE Recent Adv. Intell. Comput. Syst. RAICS 2013, pp. 86–91, 2013, doi: 10.1109/RAICS.2013.6745452.
  15. P. R. V. Chowdary, M. N. Babu, T. V. Subbareddy, B. M. Reddy, and V. Elamaran, “Image processing algorithms for gesture recognition using MATLAB,” Proc. 2014 IEEE Int. Conf. Adv. Commun. Control Comput. Technol. ICACCCT 2014, pp. 1511–1514, Jan. 2015, doi: 10.1109/ICACCCT.2014.7019356.
  16. R. R. Itkarkar, A. Nandi, and B. Mane, “Contour-based real-time hand gesture recognition for Indian sign language,” Adv. Intell. Syst. Comput., vol. 556, pp. 683–691, 2017, doi: 10.1007/978-981-10-3874-7_65.
  17. K. Tripathi and N. B. G. C. Nandi, “Continuous Indian Sign Language Gesture Recognition and Sentence Formation,” Procedia Comput. Sci., vol. 54, pp. 523–531, 2015, doi: 10.1016/j.procs.2015.06.060.
  18. M. E. Scholar, D. System, and R. Shau, “Available Online at www.ijeecse.com Indian Sign Language Recognition Available Online at www.ijeecse.com,” vol. 2, no. 3, pp. 56–59, 2015.
  19. K. M. B, A. Godbole, and S. Belhe, “Using Kinect Sensor,” pp. 528–535, 2015, doi: 10.1007/978-3-319-20801-5.
  20. G. A. Rao and P. V. V. Kishore, “Selfie video based continuous Indian sign language recognition system,” Ain Shams Eng. J., vol. 9, no. 4, pp. 1929–1939, 2018, doi: 10.1016/j.asej.2016.10.013.
  21. C. J. Sruthi and A. Lijiya, “SigNet: A deep learning based indian sign language recognition system,” Proc. 2019 IEEE Int. Conf. Commun. Signal Process. ICCSP 2019, pp. 596–600, 2019, doi: 10.1109/ICCSP.2019.8698006.
  22. N. K. Bhagat, Y. Vishnusai, and G. N. Rathna, “Indian Sign Language Gesture Recognition using Image Processing and Deep Learning,” 2019 Digit. Image Comput. Tech. Appl. DICTA 2019, pp. 1–8, 2019, doi: 10.1109/DICTA47822.2019.8945850.
  23. Sharma, A., Mittal, A., Singh, S., & Awatramani, V. (2020). Hand Gesture Recognition using Image Processing and Feature Extraction Techniques. Procedia Computer Science, 173, 181–190. https://doi.org/10.1016/J.PROCS.2020.06.022
  24. Wadhawan, A., & Kumar, P. (2020). Deep learning-based sign language recognition system for static signs. Neural Computing and Applications, 32(12), 7957–7968.https://doi.org/10.1007/S00521-019- 04691-Y.
  25. P. Likhar, N. K. Bhagat, and G. N. Rathna, “Deep Learning Methods for Indian Sign Language Recognition,” IEEE Int. Conf. Consum. Electron. - Berlin, ICCE-Berlin, vol. 2020-Novem, pp. 16–21, 2020, doi: 10.1109/ICCE-Berlin50680.2020.9352194.
  26. S. Dhivyasri, K. B. Krishnaa Hari, M. Akash, M. Sona, S. Divyapriya, and V. Krishnaveni, “An efficient approach for interpretation of Indian sign language using machine learning,” 2021 3rd Int. Conf. Signal Process. Commun. ICPSC 2021, no. May, pp. 130–133, 2021, doi: 10.1109/ICSPC51351.2021.9451692.
  27. R. Dhiman, G. Joshi, and C. Rama Krishna, “A deep learning approach for Indian sign language gestures classification with different backgrounds,” J. Phys. Conf. Ser., vol. 1950, no. 1, 2021, doi: 10.1088/1742-6596/1950/1/012020.
  28. M. Suneetha, P. M.V.D., and K. P.V.V., “Multi-view motion modelled deep attention networks (M2DA-Net) for video based sign language recognition,” J. Vis. Commun. Image Represent., vol. 78, no. April, p. 103161, 2021, doi: 10.1016/j.jvcir.2021.103161.
  29. J. Gandhi, P. Gandhi, A. Gosar, and S. Chaudhari, “Video recognition techniques for indian sign language in healthcare domain,” 2021 2nd Int. Conf. Emerg. Technol. INCET 2021, pp. 1–5, 2021, doi: 10.1109/INCET51464.2021.9456116.
  30. M. Vazquez-Enriquez, J. L. Alba-Castro, L. Docio-Fernandez, and E. Rodriguez-Banga, “Isolated sign language recognition with multi-scale spatial-temporal graph convolutional networks,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., pp. 3457–3466, 2021, doi: 10.1109/CVPRW53098.2021.00385.
  31. R. Rastgoo, K. Kiani, and S. Escalera, Sign Language Recognition: A Deep Survey, vol. 164. Elsevier Ltd., 2021.
  32. https://islrtc.nic.in/sites/default/files/Interpreter%20Directory.pdf
Index Terms

Computer Science
Information Sciences

Keywords

Sign language recognition (SLR) Gesture recognition system Indian sign language (ISL).