CFP last date
20 January 2025
Reseach Article

Classification of Types of Computer Network Attacks Through IDS (Intrusion Detection System) using Naive Bayes Classifier

by Tri Widodo, Adam Sekti Aji
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 43
Year of Publication: 2023
Authors: Tri Widodo, Adam Sekti Aji
10.5120/ijca2023922531

Tri Widodo, Adam Sekti Aji . Classification of Types of Computer Network Attacks Through IDS (Intrusion Detection System) using Naive Bayes Classifier. International Journal of Computer Applications. 184, 43 ( Jan 2023), 7-13. DOI=10.5120/ijca2023922531

@article{ 10.5120/ijca2023922531,
author = { Tri Widodo, Adam Sekti Aji },
title = { Classification of Types of Computer Network Attacks Through IDS (Intrusion Detection System) using Naive Bayes Classifier },
journal = { International Journal of Computer Applications },
issue_date = { Jan 2023 },
volume = { 184 },
number = { 43 },
month = { Jan },
year = { 2023 },
issn = { 0975-8887 },
pages = { 7-13 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number43/32595-2023922531/ },
doi = { 10.5120/ijca2023922531 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:23:51.670279+05:30
%A Tri Widodo
%A Adam Sekti Aji
%T Classification of Types of Computer Network Attacks Through IDS (Intrusion Detection System) using Naive Bayes Classifier
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 43
%P 7-13
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Computer network administrators use IDS (Intrusion Detection System) as part of a managed computer network protection system. IDS provides alerts or warnings to computer network administrators in the event of a computer network attack. All activities that pass through the computer network will be recorded in the IDS log or records. Computer network administrators need clearer information regarding what happens on the managed network such as the type of network attack, the number of attacks, and others. The most widely used classification algorithm is the Naïve Bayes Classifier. The use of Naïve Bayes Classifier is effective for grouping or classifying data based on existing data. This research is R&D research. This study aims to develop a website-based application that utilizes IDS log data classified using Naïve Bayes to identify computer network attacks. The website-based Naïve Bayes Classifier application developed can classify the types of network attacks recorded by the IDS. Network attacks can be identified by several variables, namely: Total incoming IP in range, packet length in range, time range, content, and destination port. Network administrators can improve computer network security by configuring the IDS rule using variable data processed by the Naïve Bayes Classifier application

References
  1. Wirawan, I., & Eksistyanto, I. (2015). Penerapan Naive Bayes pada Intrusion Detection System Dengan Diskritisasi Variabel. JUTI: Jurnal Ilmiah Teknologi Informasi, 13(2), 182. https://doi.org/10.12962/j24068535.v13i2.a487
  2. Fadlil, A., Riadi, I., & Aji, S. (2017). Review of Detection DDOS Attack Detection Using Naive Bayes Classifier for Network Forensics. Bulletin Of Electrical Engineering and Informatics, 6(2), 140-148. https://doi.org/10.11591/eei.v6i2.605
  3. Tabash, M., Abd Allah, M., & Tawfik, B. (2019). Intrusion Detection Model Using Naive Bayes and Deep Learning Technique. The International Arab Journal Of Information Technology, 17(2), 215-224. https://doi.org/10.34028/iajit/17/2/9
  4. Barracuda.com. 2020. What Is an Intrusion Detection System? | Barracuda Networks. [online] Available at: https://www.barracuda.com/glossary/intrusion-detection-system#:~:text=An%20intrusion%20detection%20system%20(IDS,information%20and%20event%20management%20system. [Accessed 27 October 2020].
  5. Paramitha, I., Sasmita, G. and Raharja, I., 2020. Analisis Data Log IDS Snort dengan Algoritma Clustering Fuzzy C-Means. Majalah Ilmiah Teknologi Elektro, [online] 19(1), pp.95-99. Available at: https://ojs.unud.ac.id/index.php/JTE/article/view/58376/36819 [Accessed 27 October 2020]. -4
  6. Sandi, D. and Arrofiq, M., 2018. Implementasi Analisis NIDS Berbasis Snort Dengan Metode Fuzy Untuk Mengatasi Serangan LoRaWAN. JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi), [online] 2(3), pp.685-696. Available at: http://jurnal.iaii.or.id/index.php/RESTI/article/view/504 [Accessed 27 October 2020]. -5
  7. Dewi, E. and Kasih, P., 2017. Analisis Log Snort Menggunakan Network Forensic. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), [online] 2(2), pp.72-79. Available at: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi/article/view/370 [Accessed 27 October 2020]. -6
  8. Singh, R. and Tomar, D., 2015. Network Forensics: Detection and Analysis of Stealth Port Scanning Attack. International Journal of Computer Networks and Communications Security, [online] 3(2), pp.33-42. Available at: http://www.ijcncs.org/published/volume3/issue2/p2_3-2.pdf [Accessed 27 October 2020]. -7
  9. hardianti, A.T., Manga, A. R., & Darwis, H. (2018). Penerapan Metode Naïve Bayes pada Klasifikasi Judul Jurnal. Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi 3(2). -2
  10. Pujianto, U., Widiyaningtyas, T., Prasetya, D., & Romadhon, B. (2019). Penerapan algoritma naïve bayes classifier untuk klasifikasi judul skripsi dan tugas akhir berdasarkan Kelompok Bidang Keahlian. TEKNO, 27(1), 79. https://doi.org/10.17977/um034v27i1p79-92
Index Terms

Computer Science
Information Sciences

Keywords

IDS (intrusion detection system) Network Attack Naïve Bayes Classifier