CFP last date
20 January 2025
Reseach Article

Security System Uses CCTV Camera as Facial Image Recognition using Face-API

by Olga Engelien Melo, Harson Kapoh, Ventje Ferdy Aror, Ali Akbar Ramchie
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 41
Year of Publication: 2022
Authors: Olga Engelien Melo, Harson Kapoh, Ventje Ferdy Aror, Ali Akbar Ramchie
10.5120/ijca2022922496

Olga Engelien Melo, Harson Kapoh, Ventje Ferdy Aror, Ali Akbar Ramchie . Security System Uses CCTV Camera as Facial Image Recognition using Face-API. International Journal of Computer Applications. 184, 41 ( Dec 2022), 10-14. DOI=10.5120/ijca2022922496

@article{ 10.5120/ijca2022922496,
author = { Olga Engelien Melo, Harson Kapoh, Ventje Ferdy Aror, Ali Akbar Ramchie },
title = { Security System Uses CCTV Camera as Facial Image Recognition using Face-API },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2022 },
volume = { 184 },
number = { 41 },
month = { Dec },
year = { 2022 },
issn = { 0975-8887 },
pages = { 10-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number41/32585-2022922496/ },
doi = { 10.5120/ijca2022922496 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:23:44.344241+05:30
%A Olga Engelien Melo
%A Harson Kapoh
%A Ventje Ferdy Aror
%A Ali Akbar Ramchie
%T Security System Uses CCTV Camera as Facial Image Recognition using Face-API
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 41
%P 10-14
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Security is a problem that cannot be separated from human life. Whether at home, on the go or at work. Currently, many implementations have been tried for security, especially in accessing a place or room. Several ways to ensure security, especially for people who are not supposed to be in certain places, are to limit the access rights of a person or group of people by giving keys, cards or pins to certain people using various technologies. CCTV cameras or Close Circuit Television can be used to monitor security. However, CCTV for monitoring security is still considered ineffective if there is an intrusion in a room, house, office or certain place because there must be an operator watching. This study aims to produce a system that will be used to recognize someone from their face so that it can be known and verified whether the person is registered and has access rights or is in a certain room and location without having to always be supervised by an operator. The method used is the javaScript module, namely face-api.js in the form of an open source machine learning framework with varying facial recognition test results, especially at distances above 300 cm. The decrease occurs varies, at a distance of 350 cm one face has 60% accuracy, at a distance of 400 cm the accuracy is only 50%. On 2 faces at the same time the accuracy level on the first face is 350 cm the accuracy level is 70% and the second face is 60%, at a distance of 400 cm the accuracy level on the first face is 50% and the second face is 90%.

References
  1. Pratomo. H. A, Florestyanto. M, Sari. N. I, 2019, Pengenalan Wajah untuk Pemantauan Kehadiran Pegawai Menggunakan Metode Viola Jones dan Euclidean Distance Prosiding Seminar Nasional Komunikasi dan Informatika #3:69-78
  2. Rufendhi, B. C. 2014. Penerapan Euclidean Distance Pada Eigenface Untuk Monitoring Ruangan Secara Realtime Berbasis Webcam Dengan Pencocokan Wajah (Phd Thesis). Universitas Islam Negeri Maulana Malik Ibrahim.
  3. A. Yudhana, S. Sunardi, and P. Priyatno, 2018, “Perancangan Pengaman Pintu Rumah Berbasis Sidik Jari Menggunakan Metode UML,” J. Teknol., vol. 10, no. 2, pp. 131–138, [Online]. Available: https://dx.doi.org/10.24853/jurtek.10.2.131-138.
  4. A. Yudhana, S. Sunardi, and P. Priyatno, “Development of Door Safety Fingerprint Verification Using Neural Network,” J. Phys. Conf. Ser., vol. 1373, no. 1, 2019, doi: 10.1088/1742-6596/1373/1/012053..
  5. Bayu, S., Hendriawan, A., and Susetyoko, R."Penerapan Face Recognition Dengan Metode Eigenface Dalam Intelligent Home Security" Eepis Final Project. 2009. Retrieved From Http://Repo.Pens.Ac.Id/Id/Eprint/624
  6. Histogram Sunardi , Anton Yudhana , Muhamad Alwi Talib, 2022, Perancangan Sistem Pengenalan Wajah untuk Keamanan Ruangan Menggunakan Metode Local Binary Pattern , Vol 13, No 2 .
  7. M. Turk and A. Pentland, 2002 “Eigenfaces for Recognition,” J. Cogn. Neurosci., vol. 3, no. 1, pp. 71–86, Jan. 1991, doi: 10.1162/jocn.1991.3.1.71.
  8. M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face Recognition by Independent Component Analysis,” IEEE Trans. Neural Networks, vol. 13, no. 6, pp. 1450–1464, doi: 10.1109/TNN.2002.804287.
  9. J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, 2003 “Face recognition using LDA-based algorithms,” IEEE Trans. Neural Networks, vol. 14, no. 1, pp. 195–200, doi: 10.1109/TNN.2002.806647.
  10. B. Heisele, P. Ho, and T. Poggio, 2001, “Face recognition With Support Vector Machines: Global Versus Component-based Approach,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2, no. July, pp. 688–694, doi: 10.1109/ICCV.2001.937693.
  11. A. V. Nefian and M. H. Hayes, “Hidden Markov Models for Face Recognition,” in Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP ’98 (Cat. No.98CH36181), 1998, vol. 5, no. 4, pp. 2721–2724, doi: 10.1109/ICASSP.1998.678085.
  12. T. K. Vamsi, K. C. Sai, and M. Vijayalakshmi, “Face Recognition Based Door Unlocking System Using Raspberry Pi,” nternational J. Adv. Res.
  13. Darma Putra. C, Widya Hermawan. 2016, Sistematika Biometrika : Konsep Dasar, Tekhnik Analisis Citra Dan Tahapan 175 | JURNAL TEKNIK INFORMATIKA VOL 9 NO. 2
  14. Aris Budi: Pengenalan Citra Wajah…. 166-175 ISSN 1979-9160 Membangun Aplikasi Sistem Biometrika, Yogyakarta: Penerbit Andi, 2009.
Index Terms

Computer Science
Information Sciences

Keywords

Cctv face detection face recognition face-api