CFP last date
20 December 2024
Reseach Article

2D/3D Convolutional Neural Networks for Alzheimer's Disease Prediction using Brain MRI Image

by Sunil Kumar D.S., Manju H., Harshitha R., Bharath K.N., Ganesh Kumar M.T., Kiran
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 41
Year of Publication: 2022
Authors: Sunil Kumar D.S., Manju H., Harshitha R., Bharath K.N., Ganesh Kumar M.T., Kiran
10.5120/ijca2022922481

Sunil Kumar D.S., Manju H., Harshitha R., Bharath K.N., Ganesh Kumar M.T., Kiran . 2D/3D Convolutional Neural Networks for Alzheimer's Disease Prediction using Brain MRI Image. International Journal of Computer Applications. 184, 41 ( Dec 2022), 7-9. DOI=10.5120/ijca2022922481

@article{ 10.5120/ijca2022922481,
author = { Sunil Kumar D.S., Manju H., Harshitha R., Bharath K.N., Ganesh Kumar M.T., Kiran },
title = { 2D/3D Convolutional Neural Networks for Alzheimer's Disease Prediction using Brain MRI Image },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2022 },
volume = { 184 },
number = { 41 },
month = { Dec },
year = { 2022 },
issn = { 0975-8887 },
pages = { 7-9 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number41/32584-2022922481/ },
doi = { 10.5120/ijca2022922481 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:23:43.656259+05:30
%A Sunil Kumar D.S.
%A Manju H.
%A Harshitha R.
%A Bharath K.N.
%A Ganesh Kumar M.T.
%A Kiran
%T 2D/3D Convolutional Neural Networks for Alzheimer's Disease Prediction using Brain MRI Image
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 41
%P 7-9
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The symptoms of Alzheimer's disease (AD) include significant memory loss and cognitive decline. It is linked to major alterations in brain structure that can be seen by magnetic resonance imaging (MRI) scans. Utilizing image classification technologies like convolutional neural networks, the visible preclinical structural alterations offer a chance for AD early identification (CNN). The sample size of the majority of AD-related studies, however, is currently a limitation. It is crucial to find a productive technique to train an image classifier with little data. In our project, we investigated various CNN-based transfer-learning techniques for MRI brain structure AD prediction. We discover that the prediction performance was enhanced when compared to a deep CNN trained from scratch by both pretrained 2D AlexNet with a 2D-representation approach and simple neural networks with a pre-trained 3D autoencoder.The pretrained 2D AlexNet performed even better (86%) than the 3D CNN with autoencoder (77%).

References
  1. De-Paula, V.J.; Radanovic, M.; Diniz, B.S.; Forlenza, O.V. Alzheimer’s disease. Sub-Cell. Biochem. 2012, 65, 329–352.
  2. Cipriani, G.; Dolciotti, C.; Picchi, L.; Bonuccelli, U. Alzheimer and his disease: A brief history. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2011, 32, 275–279.
  3. Blass, J.P. Alzheimer’s disease. Dis. A Mon. Dm 1985, 31, 1–69.
  4. Terry, R.D.; Davies, P. Dementia of the Alzheimer type. Annu. Rev. Neurosci. 1980, 3, 77–95.
  5. Rathmann, K.L.; Conner, C.S. Alzheimer’s disease: Clinical features, pathogenesis, and treatment. Drug Intell. Clin. Pharm. 1984, 18, 684–691.
  6. Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments in alzheimer disease: An update. J. Cent. Nerv. Syst. Dis. 2020, 12.
  7. Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446.
  8. Schachter, A.S.; Davis, K.L. Alzheimer’s disease. Dialogues Clin. Neurosci. 2000, 2, 91–100.
  9. Jatoi, S.; Hafeez, A.; Riaz, S.U.; Ali, A.; Ghauri, M.I.; Zehra, M. Low Vitamin B12 levels: An underestimated cause of minimal cognitive impairment and dementia. Cureus 2020, 12, e6976.
  10. Cho, H.S.; Huang, L.K.; Lee, Y.T.; Chan, L.; Hong, C.T. Suboptimal baseline serum Vitamin B12 is associated with cognitive decline in people with Alzheimer’s disease undergoing cholinesterase inhibitor treatment. Front. Neurol. 2018, 9, 325.
  11. McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2011, 7, 263–269.
  12. Mayeux, R.; Stern, Y. Epidemiology of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006239.
  13. Yaari, R.; Fleisher, A.S.; Tariot, P.N. Updates to diagnostic guidelines for Alzheimer’s disease. Prim. Care Companion CnsDisord. 2011, 13, 11f01262.
Index Terms

Computer Science
Information Sciences

Keywords

Alzheimer’s disease Machine Learning Models CNN Accuracy