CFP last date
20 December 2024
Reseach Article

Customer Complain Detection in E-commerce Platforms using NLP

by Fahmida Sabur Tasmia, Arafat Habib Quraishi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 40
Year of Publication: 2022
Authors: Fahmida Sabur Tasmia, Arafat Habib Quraishi
10.5120/ijca2022922508

Fahmida Sabur Tasmia, Arafat Habib Quraishi . Customer Complain Detection in E-commerce Platforms using NLP. International Journal of Computer Applications. 184, 40 ( Dec 2022), 27-31. DOI=10.5120/ijca2022922508

@article{ 10.5120/ijca2022922508,
author = { Fahmida Sabur Tasmia, Arafat Habib Quraishi },
title = { Customer Complain Detection in E-commerce Platforms using NLP },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2022 },
volume = { 184 },
number = { 40 },
month = { Dec },
year = { 2022 },
issn = { 0975-8887 },
pages = { 27-31 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number40/32579-2022922508/ },
doi = { 10.5120/ijca2022922508 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:23:40.699820+05:30
%A Fahmida Sabur Tasmia
%A Arafat Habib Quraishi
%T Customer Complain Detection in E-commerce Platforms using NLP
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 40
%P 27-31
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Online shopping has gained significant popularity in recent years. However, one major issue with online shopping is that buyers cannot physically inspect the products and so they have to rely on user reviews. In this paper, we construct a novel dataset for online reviews in the low-resourced Bengali language. Moreover, we conduct extensive experiments with strong deep learning-based baselines to benchmark the performance of such models in our dataset. We have applied RNN and Fast Text DNN to read customer’s feedback and identify areas of dissatisfaction and satisfaction. We have found that Fast Text DNN performed better then RNN with an accuracy of 74%.

References
  1. M. H. a. S. B. F. Jemai, "Sentiment analysis using machine learning algorithms," IEEE, p. 775–779, 2021.
  2. M. K. a. R. M. R. Guddeti, "Nlp based sentiment analysis on twitter data using ensemble classifirs," IEEE, pp. 1-5, 2015.
  3. B. K. P. F. N. M. A. a. A. K. D. R. A. Tuhin, "An automated system of sentiment analysis from bangla text using supervised learning techniques," IEEE, p. 360–364, 2019.
  4. S. S. a. S. H. M. A.-U.-Z. Ashik, "Data set for sentiment analysis on bengali news comments and its baseline evaluation," IEEE, pp. 1-5, 2019.
  5. T. S. a. J. Shetty, "Sentiment analysis of product reviews: a review," IEEE, pp. 298-301, 2017.
  6. N. I. T. a. M. E. Ali, "Detecting multilabel sentiment and emotions from bangla," IEEE, pp. 1-6, 2018.
  7. S. S. a. S. Jayarathna, "A sentiment classifiation in bengali and machine translated english corpus," IEEE, p. 107–114, 2019.
  8. M. J. H. a. M. S. A. M. F. Wahid, "Cricket sentiment analysis from bangla text," IEEE, pp. 1-4, 2019.
  9. M. M. H. a. E. H. O. Sharif, "Sentiment analysis of bengali texts on online," IEEE, p. 1–6, 2019.
  10. M. H. a. S. B. F. Jemai, "Sentiment analysis using machine learning algorithms," IEEE, p. 775–779, 2021.
  11. M. Y. a. S. Tedmori, "Movies reviews sentiment analysis and classifiation," IEEE, p. 860–865, 2019.
Index Terms

Computer Science
Information Sciences

Keywords

Complain Detection Online Product Review E-commerce NLP Deep Learning.