CFP last date
20 January 2025
Reseach Article

Machine Learning Approach to Global and Hemispheres Mean Temperature Anomalies Predictions with Artificial Neural Networks (ANNs)

by Farah Yasmeen, Iqra Khalid
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 40
Year of Publication: 2022
Authors: Farah Yasmeen, Iqra Khalid
10.5120/ijca2022922506

Farah Yasmeen, Iqra Khalid . Machine Learning Approach to Global and Hemispheres Mean Temperature Anomalies Predictions with Artificial Neural Networks (ANNs). International Journal of Computer Applications. 184, 40 ( Dec 2022), 20-26. DOI=10.5120/ijca2022922506

@article{ 10.5120/ijca2022922506,
author = { Farah Yasmeen, Iqra Khalid },
title = { Machine Learning Approach to Global and Hemispheres Mean Temperature Anomalies Predictions with Artificial Neural Networks (ANNs) },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2022 },
volume = { 184 },
number = { 40 },
month = { Dec },
year = { 2022 },
issn = { 0975-8887 },
pages = { 20-26 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number40/32578-2022922506/ },
doi = { 10.5120/ijca2022922506 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:23:39.928666+05:30
%A Farah Yasmeen
%A Iqra Khalid
%T Machine Learning Approach to Global and Hemispheres Mean Temperature Anomalies Predictions with Artificial Neural Networks (ANNs)
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 40
%P 20-26
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, the machine learning algorithm artificial neural network (ANN) model is applied to the Global, Northern Hemisphere and Southern Hemisphere mean temperature anomalies. The combined land-surface air and sea-surface water temperature data are obtained from Goddard Institute for Space Studies (GISS), NASA. The data are available for Global mean, Northern Hemisphere and Southern Hemisphere means since 1880 to present. The global temperature change is analyzed and the alternative analysis is compared for addressing the reality of global warming. The forecasts for the next ten years are obtained using two different ANN models; namely the NNAR (neural network auto-regression) and MLP (Multilayer perceptron) models. These forecasts are compared with Exponential Smoothing State Space (ETS) model, ARIMA/SARIMA and random walk (RW) models. The comparison is made on the basis of mean error (ME), mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE).

References
  1. Zheng, X. and Basher, R.E. 1999. Structural Time Series Models and Trend Detection in Global and Regional Temperature Series. Journal of Climate, 12, 2347-2358
  2. Woodward, W.A. and Gray, H.L. 1993 Global Warming and the Problem of Testing for Trend in Time Series Data. Journal of Climate, 6, 953-962.
  3. Kaufmann, R.K., Kauppi, H. and Stock, J.H. 2010. Does Temperature Contain a Stochastic Trend? Evaluating Conflicting Statistical Results. Climatic Change, 101, 395-405.
  4. Mills, T.C. 2010. Is Global Warming Real? Analysis of Structural Time Series Models of Global and Hemispheric Temperatures. Journal of Cosmology, 8, 1947-1954.
  5. Gay, C., Estrada, F. and Sanchez, A. 2009. Global and Hemispheric Temperature for Trend in Time Series Data. Journal of Climate, 6, 953-962.
  6. Kaufmann, R.K, Kauppi, H. and Stock, J.H. 2006.Emissions, Concentrations, & Temperature: A Time Series Analysis. Climatic Change, 77, 249-278.
  7. Haykin, S. 2009. Neural networks and learning machines, 3rd Edition. Pearson, Upper Saddle River Holden-Day, Inc., San Francisco, CA.
  8. Feng,Y., Peng, Y., Cui, N., Gong, D. and Zhang, K. 2017. Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture136:71-7.
  9. Wang, J.-Z., Wang, J.J,  Zhang, Z.G. and Guo, S.P. 2011. Forecasting stock indices with back propagation neural network. Expert Systems with Applications 38(11): 14346-14355.
  10. Kuan, C.-M. and White, H. 1994. Artificial neural networks: An econometric perspective." Econometric Reviews 13(1): 1-91.
  11. Alotaibi, K.; Ghumman, A.R.; Haider, H.; Ghazaw Y.M.; Shafiquzzaman, M. 2018. Future predictions of rainfall and temperature using GCM and ANN for arid regions: A case study for the Qassim Region, Saudi Arabia. Water, 10, 1260
  12. Chen, T., Kapron, N.. Chen, J.Y. 2020 Using Evolving ANN-Based Algorithm Models for Accurate Meteorological Forecasting Applications in Vietnam. Math. Probl. Eng.
  13. Maldonado-Correa, J.. Valdiviezo-Condolo, M.; Viñan-Ludeña, M.S.; Samaniego-Ojeda, C.; Rojas-Moncayo, M. 2020. Wind power forecasting for the Villonaco wind farm. Wind Eng.
  14. Radhika, Y.; Shashi, M. 2021. Atmospheric temperature prediction using support vector machines. Int. J. Comput. Theory Eng. Appl. Sci., 11, 4757 45-46
  15. Salcedo-Sanz, S.; Deo, R.; Carro-Calvo, L.; Saavedra-Moreno, B. 2016. Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms. Theor. Appl. Climatol., 125, 13–25
  16. Hossain, M.; Rekabdar, B.; Louis, S.J.; Dascalu, S. 2015 Forecasting the weather of Nevada: A deep learning approach. In Proceedings of the 2015. international Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–6.
  17. Białobrzewski, I. Porównanie algorytmów uczenia sieci neuronowej jednokierunkowej, z czasowym opó´znieniem, wykorzystanej 2005 do predykcji warto´sci temperatury powietrza atmosferycznego. In˙zynieria Rol., 9, pp. 7–15.
  18. Lai, L.L., Braun, H.; Zhang, Q., Wu, Q.; Ma, Y., Sun, W.; Yang, L. Intelligent weather forecast 2004. In Proceedings of the International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), Shanghai, China, 26–29 August 2004, Volume 7, pp. 4216–4221.
  19. Abdel-Aal, R.E. 2004. Short-term hourly load forecasting using abductive networks. IEEE Trans. Power Syst. 19, 164–173.
  20. Seyyedabbasi, A., Candan, F., Kiani, F. 2018. A Method for Forecasting Weather Condition by Using Artificial Neural Network Algorithm. ICTACT J. Soft Comput., 8, 1696–1700.
  21. Abhishek, K., Singh, M., Ghosh, S., Anand, A. 2012. Weather forecasting model using Artificial Neural Network. Procedia Technol.,4, 311–318.
  22. Abdel-Aal, R., Elhadidy, M. 1995. Modeling and forecasting the daily maximum temperature using abductive machine learning. Weather Forecast. 10, 310–325.
  23. Rajendra1, K. V. N.,  Murthy · A,  Subbarao, Rahul  B. 2019. Use of ANN models in the prediction of meteorological data, Modelling Earth System and Environment, 5. 1051-1058
  24. Hyndman, R. J., Athanasopoulos, G., ergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., Petropoulos, F., Razbash, S.,Wang,E., & Yasmeen, F. 2018. forecast: Forecasting functions for time series and linear models. R package version 8.4.
  25. Hyndman, R.J. and Atanoausoppolus, J. 2021, Forecasting: Principles and practice, 3rd edition, OTexts, Melbourne, Australia.
  26. Hyndman, R. J., and Khandakar, Y. 2008. Automatic time series forecasting: The forecast package for R Journal of Statistical Software, 27(3), 1–22. https://doi.org/10.18637/jss.v027
  27. Hyndman, R.J., Koehler, A.B., Ord, J.K. and Snyder, R.D. 2005. Forecasting with Exponential Smoothing: The State Space Approach. Springer-Verlag, New York. http: // www. exponentialsmoothing.
  28. Khalid, I. 2022. Machine Learning Approach to Global & Hemispheres Mean Temperature Anomalies Predictions with Artificial Neural Networks (ANNs), unpublished MPhil Thesis, University of Karachi.
Index Terms

Computer Science
Information Sciences

Keywords

Weather forecasting machine learning hemispheres temperature temperature anomalies artificial neural network (ANN) multilayer perceptron