CFP last date
20 December 2024
Reseach Article

Reliability Assessment of Machine Learning in Tumour Detection

by Vedant Gadhavi, Arth Anant, Darshit Shah
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 38
Year of Publication: 2022
Authors: Vedant Gadhavi, Arth Anant, Darshit Shah
10.5120/ijca2022922468

Vedant Gadhavi, Arth Anant, Darshit Shah . Reliability Assessment of Machine Learning in Tumour Detection. International Journal of Computer Applications. 184, 38 ( Dec 2022), 24-30. DOI=10.5120/ijca2022922468

@article{ 10.5120/ijca2022922468,
author = { Vedant Gadhavi, Arth Anant, Darshit Shah },
title = { Reliability Assessment of Machine Learning in Tumour Detection },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2022 },
volume = { 184 },
number = { 38 },
month = { Dec },
year = { 2022 },
issn = { 0975-8887 },
pages = { 24-30 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number38/32564-2022922468/ },
doi = { 10.5120/ijca2022922468 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:23:29.067588+05:30
%A Vedant Gadhavi
%A Arth Anant
%A Darshit Shah
%T Reliability Assessment of Machine Learning in Tumour Detection
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 38
%P 24-30
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

It is vital that tumours are diagnosed and predicted early in cancer research to help the patient clinically. In today’s world, innovative approaches are being developed to minimise or avoid lethal human diseases. Machine Learning is becoming increasingly popular for classifying cancer patients according to their risk of recurrence. Machine learning expands its applications beyond the technical domain, and its pertinence in the medical area is also proliferating. It can also be used in tumour detection because of its ability to evaluate and classify a large amount of complex image data. Machine learning methods may appear to enhance understanding of tumour progression, but a significant amount of evidence must be obtained to use them in everyday clinical practice. The aim of this study is to review, categorise, analyse, and discuss the current developments in human tumour detection using machine learning techniques which help in cancer diagnosis and cure processes.

References
  1. Samuel, Arthur (1959). "Some Studies in Machine Learning Using the Game of Checkers". IBM Journal of Research and Development. 3 (3): 210–229. CiteSeerX 10.1.1.368.2254. doi:10.1147/rd.33.0210.
  2. R. Kohavi and F. Provost, "Glossary of terms," Machine Learning, vol. 30, no. 2–3, pp. 271–274, 1998.
  3. K. Shailaja, B. Seetharamulu and M. A. Jabbar, "Machine Learning in Healthcare: A Review," 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), 2018, pp. 910-914, doi: 10.1109/ICECA.2018.8474918.
  4. Parthiban, G., and Srivatsa, S.K., “Applying Machine Learning Methods in Diagnosing Heart Disease for Diabetic Patients”, International Journal of Applied Information Systems, vol.3, pp.25-30, 2012.
  5. Otoom A.F., Abdallah E.E., Kilani Y., Kefaye A., “Effective Diagnosis and Monitoring of Heart Disease”, International Journal of Software Engineering and Its Applications, vol.9, pp.143-156, 2015.
  6. Iyer A., Jeyalatha S., and Sumbaly R, “Diagnosis of Diabetes Using Classification Mining Techniques”, International Journal of Data Mining & Knowledge Management Process (IJDKP), vol.5, pp. 1-14,2015.
  7. Papageorgiou EI, Papandrianos NI, Apostolopoulos DJ, Vassilakos PJ., “Fuzzy cognitive map-based decision support system for thyroid diagnosis management”, International Conference on Fuzzy Systems pp. 1204-1211,2008.
  8. Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D. (2016). 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science(), vol 9901. Springer, Cham. https://doi.org/10.1007/978-3-319-46723-8_25
  9. G. Hemanth, M. Janardhan and L. Sujihelen, "Design and Implementing Brain Tumor Detection Using Machine Learning Approach," 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 2019, pp. 1289-1294, doi: 10.1109/ICOEI.2019.8862553.
  10. M. Siar and M. Teshnehlab, "Brain Tumor Detection Using Deep Neural Network and Machine Learning Algorithm," 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), 2019, pp. 363-368, doi: 10.1109/ICCKE48569.2019.8964846.
  11. Mesut Toğaçar, Burhan Ergen, Zafer Cömert, BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model, Medical Hypotheses, Volume 134, 2020
  12. M.O. Khairandish, M. Sharma, V. Jain, J.M. Chatterjee, N.Z. Jhanjhi, A Hybrid CNN-SVM Threshold Segmentation Approach for Tumor Detection and Classification of MRI Brain Images, IRBM, Volume 43, Issue 4, 2022
  13. Su MC, Cheng CY, Wang PC. A neural-network-based approach to white blood cell classification. The scientific world journal. 2014 Jan 1;2014
  14. Sadad T, Rehman A, Munir A, Saba T, Tariq U, Ayesha N, Abbasi R. Brain tumor detection and multi-classification using advanced deep learning techniques. Microsc Res Tech. 2021 Jun;84(6):1296-1308. doi: 10.1002/jemt.23688. Epub 2021 Jan 5. PMID: 33400339.
  15. Saba T. Automated lung nodule detection and classification based on multiple classifiers voting. Microsc Res Tech. 2019 Sep;82(9):1601-1609. doi: 10.1002/jemt.23326. Epub 2019 Jun 26. PMID: 31243869.
  16. Firmino, M., Angelo, G., Morais, H. et al. Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy. BioMed Eng OnLine 15, 2 (2016). https://doi.org/10.1186/s12938-015-0120-7
  17. Naqi SM, Sharif M, Jaffar A. Lung nodule detection and classification based on geometric fit in parametric form and deep learning. Neural Comput Appl 2018:1–19.
  18. Asuntha A, Srinivasan A. Deep learning for lung Cancer detection and classification. Multimed Tools Appl 2020:1–32
  19. Lyu J, Ling SH. Using Multi-level Convolutional Neural Network for Classification of Lung Nodules on CT images. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:686-689. doi: 10.1109/EMBC.2018.8512376. PMID: 30440489.
  20. Lin, C.-J.; Jeng, S.-Y.; Chen, M.-K. Using 2D CNN with Taguchi Parametric Optimization for Lung Cancer Recognition from CT Images. Appl. Sci. 2020, 10, 2591. https://doi.org/10.3390/app10072591
  21. Rustam, Zuherman & Hartini, Sri & Pratama, Rivan & Yunus, Reyhan Eddy & Hidayat, Rahmat. (2020). Analysis of Architecture Combining Convolutional Neural Network (CNN) and Kernel K-Means Clustering for Lung Cancer Diagnosis. International Journal on Advanced Science, Engineering and Information Technology. 10. 1200. 10.18517/ijaseit.10.3.12113.
  22. Sori, W.J., Feng, J. & Liu, S. Multi-path convolutional neural network for lung cancer detection. Multidim Syst Sign Process 30, 1749–1768 (2019). https://doi.org/10.1007/s11045-018-0626-9
  23. BAnji Reddy Vaka, Badal Soni, Sudheer Reddy K., Breast cancer detection by leveraging Machine Learning, ICT Express, Volume 6, Issue 4, 2020, Pages 320-324, ISSN 2405-9595, https://doi.org/10.1016/j.icte.2020.04.009.
  24. M. Amrane, S. Oukid, I. Gagaoua and T. Ensarİ, "Breast cancer classification using machine learning," 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT), 2018, pp. 1-4, doi: 10.1109/EBBT.2018.8391453.
  25. Ibrahim Obaid, Omar & Mohammed, Mazin & Abd Ghani, Mohd Khanapi & Mostafa, Salama & Al-Dhief, Fahad. (2018). Evaluating the Performance of Machine Learning Techniques in the Classification of Wisconsin Breast Cancer. International Journal of Engineering and Technology. 7. 160-166. 10.14419/ijet.v7i4.36.23737.
  26. Gour, M, Jain, S, Sunil Kumar, T. Residual learning based CNN for breast cancer histopathological image classification. Int J Imaging Syst Technol. 2020; 30: 621– 635. https://doi.org/10.1002/ima.22403
  27. Zhiqiong Wang, Ge Yu, Yan Kang, Yingjie Zhao, Qixun Qu, Breast tumor detection in digital mammography based on extreme learning machine, Neurocomputing, Volume 128, 2014, Pages 175-184, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2013.05.053.
  28. J. Zuluaga-Gomez, Z. Al Masry, K. Benaggoune, S. Meraghni & N. Zerhouni (2021) A CNN-based methodology for breast cancer diagnosis using thermal images, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 9:2, 131-145, DOI: 10.1080/21681163.2020.1824685
  29. Karan Gupta, Nidhi Chawla, Analysis of Histopathological Images for Prediction of Breast Cancer Using Traditional Classifiers with Pre-Trained CNN, Procedia Computer Science, Volume 167, 2020, Pages 878-889, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2020.03.427.
  30. Zeyad O Moussa *, AE El Latif, Breast cancer detection in ultrasound imaging, World Journal of Advanced Research and Reviews, 2021, 12(01), 308–314, https://doi.org/10.30574/wjarr.2021.12.1.0522
  31. A. Genovese, M. S. Hosseini, V. Piuri, K. N. Plataniotis and F. Scotti, "Histopathological Transfer Learning for Acute Lymphoblastic Leukemia Detection," 2021 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 2021, pp. 1-6, doi: 10.1109/CIVEMSA52099.2021.9493677.
  32. S. Mandal, V. Daivajna and R. V., "Machine Learning based System for Automatic Detection of Leukemia Cancer Cell," 2019 IEEE 16th India Council International Conference (INDICON), 2019, pp. 1-4, doi: 10.1109/INDICON47234.2019.9029034.
  33. Nimesh Patel, Ashutosh Mishra, Automated Leukaemia Detection Using Microscopic Images, Procedia Computer Science, Volume 58, 2015, Pages 635-642, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2015.08.082.
  34. Rehman, A, Abbas, N, Saba, T, Rahman, Syed Ijaz ur, Mehmood, Z, Kolivand, H. Classification of acute lymphoblastic leukemia using deep learning. Microsc Res Tech. 2018; 81: 1310– 1317. https://doi.org/10.1002/jemt.23139
  35. Zhang, C., Wu, S., Lu, Z., Shen, Y., Wang, J., Huang, P., Lou, J., Liu, C., Xing, L., Zhang, J., Xue, J. and Li, D. (2020), Hybrid adversarial-discriminative network for leukocyte classification in leukemia. Med. Phys., 47: 3732-3744. https://doi.org/10.1002/mp.14144
  36. Saba, Tanzila. (2020). Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges. Journal of Infection and Public Health. 13. 10.1016/j.jiph.2020.06.033.
  37. Muhammad Attique Khan, Muhammad Sharif, Tallha Akram, Mudassar Raza, Tanzila Saba, Amjad Rehman, Hand-crafted and deep convolutional neural network features fusion and selection strategy: An application to intelligent human action recognition, Applied Soft Computing, Volume 87, 2020, 105986, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2019.105986.
  38. Rawat J, Bhadauria HS, Singh A, Virmani J. Review of leukocyte classification techniques for microscopic blood images. In2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom) 2015 Mar 11 (pp. 1948-1954). IEEE.
  39. Ramoser H, Laurain V, Bischof H, Ecker R. Leukocyte segmentation and classification in blood-smear images. In2005 IEEE Engineering in Medicine and Biology 27th Annual Conference 2006 Jan 17 (pp. 3371-3374). IEEE.
Index Terms

Computer Science
Information Sciences

Keywords

Machine learning Deep learning Neural Networks Cancer disease Robotic surgery Classification Tumour detection