CFP last date
20 December 2024
Reseach Article

Development of Piston Type Shape Memory Alloy Actuated Pump for Drug Delivery

by Muhammad Sajid Khan, Jawaid Daudpoto, Amir Ahmed Qazi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 36
Year of Publication: 2022
Authors: Muhammad Sajid Khan, Jawaid Daudpoto, Amir Ahmed Qazi
10.5120/ijca2022922460

Muhammad Sajid Khan, Jawaid Daudpoto, Amir Ahmed Qazi . Development of Piston Type Shape Memory Alloy Actuated Pump for Drug Delivery. International Journal of Computer Applications. 184, 36 ( Nov 2022), 26-31. DOI=10.5120/ijca2022922460

@article{ 10.5120/ijca2022922460,
author = { Muhammad Sajid Khan, Jawaid Daudpoto, Amir Ahmed Qazi },
title = { Development of Piston Type Shape Memory Alloy Actuated Pump for Drug Delivery },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2022 },
volume = { 184 },
number = { 36 },
month = { Nov },
year = { 2022 },
issn = { 0975-8887 },
pages = { 26-31 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number36/32550-2022922460/ },
doi = { 10.5120/ijca2022922460 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:23:19.069368+05:30
%A Muhammad Sajid Khan
%A Jawaid Daudpoto
%A Amir Ahmed Qazi
%T Development of Piston Type Shape Memory Alloy Actuated Pump for Drug Delivery
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 36
%P 26-31
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The supply of drugs is of great importance for healing the disease. The blood sugar level of diabetic personal is required to be repeatedly observed, in accordance with level of sugar insulin be injected to wipe out surplus glucose. Treatment with injections is linked with soreness, contamination, injurious to body ornaments, training of a person to inject required level of drug is not possible. Miniature-pump are finding their rising application in the field of biomedical in particular drug delivery system based on various proposed techniques. Every actuation system for micro pump has their own advantages and disadvantages in terms of voltage applied and rate of flow of drug and algorithm effectiveness and complexity for controlled drug supply. SMA based actuator find their novelty as they required less voltage and provide better flow rate. This research proposes SMA wire actuator based pump for drug delivery system, a novel syringe shaped pump is developed with integration of SMA wires in loop configuration at edges of the syringe. The presented system will be able to discharge prefilled water upon actuation of SMA wire actuators with relatively simple mechanism and can be employed for delivering numerous type of drugs into human body.

References
  1. Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. Journal of Controlled Release : Official Journal of the Controlled Release Society. 2014 Sep;190:15-28.
  2. Y. Li, W.V. Roy, P.M. Vereecken, L. Lagae, Effects of laminar flow within a versatile microfluidic chip for in-situ electrode characterization and fuel cells, Microelectron. Eng. 181 (2017) 47-54.
  3. R.J. Yang, H.H. Hou, Y.N. Wang, L.M. Fu, Micro-magnetofluidics in microfluidic systems: A review, Sens. Actuators B: Chem. 224 (2016) 1-15.
  4. J.W. Thies, P. Kuhn, B. Thürmann, S. Dübel, A. Dietzel, Microfluidic quartz-crystal-microbalance (QCM) sensors with specialized immunoassays for extended measurement range and improved reusability, Microelectron. Eng. 79 (2017) 25-30.
  5. H.T. Nguyen, L.S. Bernier, A.M. Jean, R. Trouillon, M.A.M. Gijs, Microfluidic-assisted chromogenic in situ hybridization (MA-CISH) for fast and accurate breast cancer diagnosis, Microelectron. Eng. 183-184 (2017) 52-57.
  6. R.J. Yang, C.C. Liu, Y.N. Wang, H.H. Hou, L.M. Fu, A comprehensive review of micro-distillation methods, Chem. Eng. J. 313 (2017) 1509-1520.
  7. T.L. Chang, C.H. Huang, S.Y. Chou, S.F. Tseng, Y.W. Lee, Direct fabrication of nanofiber scaffolds in pillar-based microfluidic device by using electrospinning and picosecond laser pulses, Microelectron. Eng. 177 (2017) 52-58.
  8. S. Herrlich, S. Spieth, S. Messner, R. Zengerle, Osmotic micropumps for drug delivery, Adv. drug Deliv. Rev. 64 (2012) 1617-1627.
  9. C. Zhang, D. Xing, Y. Li, Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends, Biotechnol. Adv. 25 (2007) 483-514
  10. C.K. Byun, K. Abi‐Samra, Y.K. Cho, S. Takayama, Pumps for microfluidic cell culture, Electrophoresis 35 (2014) 245-257
  11. H.T. Chang, C.Y. Lee, C.Y. Wen, Design and modeling of electromagnetic actuator in MEMS-based valveless impedance pump, Microsyst. Technol. 13 (2007)1615-1622.
  12. A. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, MEMS-based micropumps in drug delivery and biomedical applications, Sens. Actuators B: Chem.130 (2008) 917-942.
  13. C. Joshitha, B. S. Sreeja and S. Radha, "A review on micropumps for drug delivery system," 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, 2017, pp. 186-190., 643–674(2021)
  14. M. Matar, A.T. Al-Halhouli1, A. Dietzel, S. Büttgenbach, Microfabricated centrifugal pump driven by an integrated synchronous micromotor, Microsyst. Technol. 23 (2017) 2475-2483.
  15. S.C. Lin, Y.L. Sung, C.C. Peng, Y.C. Tung, C.T. Lin, An in-situ filtering pump for particle-sample filtration based on low-voltage electrokinetic mechanism, Sens. Actuators B: Chem. 238 (2017) 809-816.
  16. X.Y. Wang, Y.T. Ma, G.Y. Yan, D. Huang, Z.H. Feng, High flow-rate piezoelectric micropump with two fixed endspolydimethylsiloxane valves and compressible spaces, Sens. Actuators A: Phys. 218 (2014) 94-104.
  17. X.Y. Wang, Y.T. Ma, G.Y. Yan, Z.H. Feng, A compact and high flow-rate piezoelectric micropump with a folded vibrator, Smart Mater. Struct. 23 (2014) 115005.
  18. X. He, W. Xu, N. Lin, B.B. Uzoejinwa, Z. Deng, Dynamics modeling and vibration analysis of a piezoelectric diaphragm applied in valvelessmicropump, J. Sound Vib. 405 (2017) 133-143.
  19. J.S. Dong, W.H. Chen, P. Zeng, R.G. Liu, C. Shen, W.S. Liu, Q.Q. Chen, Y. Yang, Y. Wu, Z.G. Yang, B.S. Lin, Design and experimental research on piezoelectric pump with triple vibrators, Microsyst. Technol. 23 (2017) 3019-3026.
  20. X. He, L. Xu, X. Zhang, S. Yang, A bidirectional valveless piezoelectric micropump with three chambers applying synthetic jet, J. Mech. Sci. Tech. 30 (2016) 4015-4022
  21. J. Wang, Y. Liu, Y. Shen, S. Chen, Z. Yang,A resonant piezoelectric diaphragm pump transferring gas withcompact structure, Micromachines 7 (2016) 219.
  22. P.H. Cazorla, O. Fuchs, M. Cochet, S. Maubert, G.L. Rhun, Y. Fouillet, E. Defay, A low voltage silicon micro-pump based on piezoelectric thin films, Sens. Actuators A: Phys. 250 (2016) 35-39
  23. H.K. Ma, R.H. Chen, N.S. Yu, Y.H. Hsu, A miniature circular pump with a piezoelectric bimorph and adisposable chamber for biomedical applications, Sens. Actuators A: Phys. 251 (2016) 108-118.
  24. S. Le, H. Hegab, Investigation of a multistage micro gas compressor cascaded in series for increase pressure rise, Sens. Actuators A: Phys. 256 (2017) 66-76.
  25. C.H. Cheng, A.S. Yang, C.J. Lin,W.J. Huang, Characteristic studies of a novel piezoelectric impedance micropump, Microsyst. Technol. 23 (2017) 1709-1717.
  26. J.S. Dong, R.G. Liu, W.S. Liu, Q.Q. Chen, Y. Yang, Y. Wu, Z.G. Yang, B.S. Lin, Design of a piezoelectric pump with dual vibrators, Sens. Actuators A: Phys. 257 (2017) 165-172.
  27. F.A.M. Ghazali, C.K. Mah, A. AbuZaiter, P.S. Chee, M.S.M. Ali, Soft dielectric elastomer actuator micropump, Sens. Actuators A: Phys. 263 (2017) 276-284
  28. D.G. Johnson, D.A. Borkholder, Towards an implantable, low flow micropump that uses no power in the blocked-flow state, Micromachines 7 (2016) 99.
  29. M. Shirkosh,Y. Hojjat, H. Sadeghian, A new design of electrostatic traveling wave (ETW) micropump and the effect of parameters on the flow rate, Flow Meas. Instrum. 48 (2016) 8-14.
  30. N.A. Hamid, B.Y. Majlis, J. Yunas, A.R. Syafeeza, Y.C. Wong, M. Ibrahim, A stack bonded thermo-pneumatic micro-pump utilizing polyimide based actuator membrane for biomedical applications, Microsyst. Technol. 23 (2017) 4037-4043.
  31. P.S. Chee, M. Nafea, P.L. Leow, M.S.M. Ali, Thermal analysis of wirelessly powered thermo-pneumatic micropump based onplanar LC circuit, J. Mech. Sci. Tech. 30 (2016) 2659-2665.
  32. P.S. Chee, M.N. Minjal, P. L. Leow, M.S.M. Ali, Wireless powered thermo-pneumatic micropump using frequency-controlled heater, Sens. Actuators A: Phys. 233 (2015) 1-8.
  33. J. Fong, Z. Xiao, K. Takahata, Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery, Lab Chip 15 (2015) 1050-1058.
  34. M.S.M. Ali, K. Takahata, Wireless microfluidic control with integrated shape-memory-alloy actuators operated by field frequency modulation, J. Micromech. Microeng. 21 (2011) 75005.
  35. J.M. Robertson, R.X. Rodriguez, L.R. Holmes Jr, P.T. Mather, E.D. Wetzel, Thermally driven microfluidic pumping via reversible shape memory polymers, Smart Mater. Struct. 25 (2016) 085043.
  36. P.S. Chee, R.A. Rahim, R. Arsat, U. Hashim, P.L. Leow, Bidirectional flow micropump based on dynamic rectification, Sens. Actuators A: Phys. 204 (2013) 107-113.
  37. P.S. Chee, R. Arsat, T. Adam, U. Hashim, R.A. Rahim, P.L. Leow, Modular architecture of a non-contact pinch actuation micropump, Sensors 12 (2012), 12572-12587.
  38. M. Kilani, H. Khasawneh, A. Badran, A. Awidi, Further development on a gentle electromagnetic pump for fluidswith stress-sensitive microparticles, Sens. Actuators A: Phys. 247 (2016) 440-447.
  39. P. Kawun, S. Leahy, Y. Lai, A thin PDMS nozzle/diffuser micropump for biomedical applications, Sens. Actuators A: Phys. 249 (2016) 149-154.
  40. A. Ehsani, A. Nejat, Conceptual design and performance analysis of a novel flexible-valve micropump using magneto-fluid–solid interaction, Smart Mater. Struct. 26 (2017) 055036.
Index Terms

Computer Science
Information Sciences

Keywords

Shape Memory Alloy (SMA) Piezoelectric (PZT) Drug Delivery Device (DDD) Dielectric Elastomer Actuator (DEA)