CFP last date
20 January 2025
Reseach Article

BRB U-Net: Bottleneck Residual Blocks in U-Net for Light-Weight Semantic Segmentation

by Aruna Kumari Kakumani, L. Padma Sree
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 33
Year of Publication: 2022
Authors: Aruna Kumari Kakumani, L. Padma Sree
10.5120/ijca2022922430

Aruna Kumari Kakumani, L. Padma Sree . BRB U-Net: Bottleneck Residual Blocks in U-Net for Light-Weight Semantic Segmentation. International Journal of Computer Applications. 184, 33 ( Oct 2022), 63-67. DOI=10.5120/ijca2022922430

@article{ 10.5120/ijca2022922430,
author = { Aruna Kumari Kakumani, L. Padma Sree },
title = { BRB U-Net: Bottleneck Residual Blocks in U-Net for Light-Weight Semantic Segmentation },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2022 },
volume = { 184 },
number = { 33 },
month = { Oct },
year = { 2022 },
issn = { 0975-8887 },
pages = { 63-67 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number33/32531-2022922430/ },
doi = { 10.5120/ijca2022922430 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:23:06.026591+05:30
%A Aruna Kumari Kakumani
%A L. Padma Sree
%T BRB U-Net: Bottleneck Residual Blocks in U-Net for Light-Weight Semantic Segmentation
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 33
%P 63-67
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Cell is the fundamental entity of all living organisms. Understanding cell behaviour is improtant to study the biological processes in living organisms. In this work semantic segmentation of cells in microscopy images is studied. Specifically a novel deep learning architechture, BRB U-Net is proposed for the semantic segmentation of cells in microscopy. Bottleneck residual blocks are incorporated in U-Net architechture to achieve a light weight semantic segmentation model. The proposed method is evaluated with Phc-C2DH-U373 dataset of cell tracking challenge and achieves 0.9430 and 0.8383 dice similarity coefficient and intersection over union respectively. BRB U-Net achieved 7.68 times less number of parameters and model size is 7.35 times lesser than U-Net.

References
  1. J. Boyd, M. Fennell, and A. Carpenter, “Harnessing the power of microscopy images to accelerate drug discovery: what are the possibilities?,” Expert Opin. Drug Discov., vol. 15, no. 6, pp. 639–642, 2020, doi: 10.1080/17460441.2020.1743675.
  2. E. M. Gabriel, D. T. Fisher, S. Evans, K. Takabe, and J. J. Skitzki, “Intravital microscopy in the study of the tumor microenvironment: From bench to human application,” Oncotarget, vol. 9, no. 28, pp. 20165–20178, 2018, doi: 10.18632/oncotarget.24957.
  3. G. A. Romar, T. S. Kupper, and S. J. Divito, “Research techniques made simple: Techniques to assess cell proliferation,” J. Invest. Dermatol., vol. 136, no. 1, pp. e1–e7, 2016, doi: 10.1016/j.jid.2015.11.020.
  4. J. E. N. Jonkman et al., “An introduction to the wound healing assay using live-cell microscopy,” Cell Adhes. Migr., vol. 8, no. 5, pp. 440–451, 2014, doi: 10.4161/cam.36224.
  5. S. Iyer, S. Mukherjee, and M. Kumar, “Watching the embryo: Evolution of the microscope for the study of embryogenesis,” BioEssays, vol. 43, no. 6, pp. 1–17, 2021, doi: 10.1002/bies.202000238.
  6. Y. T. Su, Y. Lu, J. Liu, M. Chen, and A. A. Liu, “Spatio-Temporal Mitosis Detection in Time-Lapse Phase-Contrast Microscopy Image Sequences: A Benchmark,” IEEE Trans. Med. Imaging, vol. 40, no. 5, pp. 1319–1328, 2021, doi: 10.1109/TMI.2021.3052854.
  7. T. B. Olaf Ronneberger, Philip Fischer, “unet for biomedical image segmentation,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9351, no. Cvd, p. 234241. doi: 10.1007/978-3-319-24574-4.
  8. Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, UNet++: A Nested U-Net Architecture, vol. 11045 LNCS. Springer International Publishing, 2018. doi: 10.1007/978-3-030-00889-5.
  9. F. I. Diakogiannis, F. Waldner, P. Caccetta, and C. Wu, “ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data,” ISPRS J. Photogramm. Remote Sens., vol. 162, pp. 94–114, 2020, doi: 10.1016/j.isprsjprs.2020.01.013.
  10. I. Delibasoglu and M. Cetin, “Improved U-Nets with inception blocks for building detection,” J. Appl. Remote Sens., vol. 14, no. 04, pp. 1–15, 2020, doi: 10.1117/1.jrs.14.044512.
  11. O. Oktay et al., “Attention U-Net: Learning Where to Look for the Pancreas,” no. Midl, 2018, [Online]Available: http://arxiv.org/abs/1804.03999
  12. N. Beheshti, “Beheshti_Squeeze_U-Net_A_Memory_and_Energy_Efficient_Image_Segmentation_Network_CVPRW_2020.
  13. C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07-12-June, pp. 1–9, 2015, doi: 10.1109/CVPR.2015.7298594.
  14. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” pp. 1–13, 2016, [Online]. Available: http://arxiv.org/abs/1602.07360
  15. H. F. Tsai, J. Gajda, T. F. W. Sloan, A. Rares, and A. Q. Shen, “Usiigaci: Instance-aware cell tracking in stain-free phase contrast microscopy enabled by machine learning,” SoftwareX, vol. 9, pp. 230–237, 2019, doi: 10.1016/j.softx.2019.02.007.
  16. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 386–397, 2020, doi: 10.1109/TPAMI.2018.2844175.
  17. L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking Atrous Convolution for Semantic Image Segmentation,” 2017, [Online]. Available: http://arxiv.org/abs/1706.05587
  18. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.
  19. Cell Tracking Challenge, http://celltrackingchallenge.net/
  20. D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.
Index Terms

Computer Science
Information Sciences

Keywords

Deep Learning Semantic Segmentation Microscopy U-Net Cells MobileNetV2