CFP last date
20 January 2025
Reseach Article

Application of Fitzpatrick Sequences to Solve a Heat Transfer Problem

by Mohamed El Hachmi, Abdelaziz Ghafiri, Jamal Chaoufi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 33
Year of Publication: 2022
Authors: Mohamed El Hachmi, Abdelaziz Ghafiri, Jamal Chaoufi
10.5120/ijca2022922427

Mohamed El Hachmi, Abdelaziz Ghafiri, Jamal Chaoufi . Application of Fitzpatrick Sequences to Solve a Heat Transfer Problem. International Journal of Computer Applications. 184, 33 ( Oct 2022), 59-62. DOI=10.5120/ijca2022922427

@article{ 10.5120/ijca2022922427,
author = { Mohamed El Hachmi, Abdelaziz Ghafiri, Jamal Chaoufi },
title = { Application of Fitzpatrick Sequences to Solve a Heat Transfer Problem },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2022 },
volume = { 184 },
number = { 33 },
month = { Oct },
year = { 2022 },
issn = { 0975-8887 },
pages = { 59-62 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number33/32530-2022922427/ },
doi = { 10.5120/ijca2022922427 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:23:05.352505+05:30
%A Mohamed El Hachmi
%A Abdelaziz Ghafiri
%A Jamal Chaoufi
%T Application of Fitzpatrick Sequences to Solve a Heat Transfer Problem
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 33
%P 59-62
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The purpose of the article is to resolve the heat equation by optimizing a functional. Various cases of thermal conductivity tensors are developed. The Legendre-Fenchel-Moreau convex transformation is particularly used. Using the Fitzpatrick method, appropriate increasing sequences are built for materials with linear but asymmetric heat transfer.

References
  1. Bergheau, J. M., & Fortunier, R. (2013). Finite element simulation of heat transfer. John Wiley & Sons.
  2. Moreau, J. J. (1966). Fonctionnelles convexes. Séminaire Jean Leray, (2), 1-108. Reprint: Istituto poligrafico e zecca dello stato S.p.A., Roma, 2003.
  3. Halphen B, Son NQ (1975) On the generalized standard materials [French]. J de Mécanique 14:39–63
  4. De Saxcé G, Bousshine L (2002) Implicit standard materials. In: Weichert D, Maier G (eds) Inelastic behaviour of structures under variable repeated loads–direct analysis methods. Int. Centre Mech. Sci., CISM Courses and Lectures IV, vol 432. Springer, Wien, New York
  5. Fitzpatrick SP (1988) Representing monotone operators by convex functions. Miniconference on functional analysis and optimization (Canberra, August 8–24). In: Fitzpatrick SP, Giles JR (eds) Proceedings of the Centre for Mathematical Analysis. Australian National University, Canberra, vol 20, pp 59–65
  6. Vallée, C., Chaoufi, J., & Lerintiu, C. (2014). The Dirichlet–Neumann problem revisited after modelling a new class of non-smooth phenomena. Annals of Solid and Structural Mechanics, 6(1), 29-36.
Index Terms

Computer Science
Information Sciences

Keywords

Heat transfer Variational principle Legendre-Fenchel transform Fitzpatrick’s series Functional optimization