CFP last date
20 January 2025
Reseach Article

Smart Grid Management Modeling using Blockchain and Machine Learning Technologies

by Roberto Alexandre Dias, Rafaela Oliveira De Azevedo, Lucas Moino Armada
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 25
Year of Publication: 2022
Authors: Roberto Alexandre Dias, Rafaela Oliveira De Azevedo, Lucas Moino Armada
10.5120/ijca2022922311

Roberto Alexandre Dias, Rafaela Oliveira De Azevedo, Lucas Moino Armada . Smart Grid Management Modeling using Blockchain and Machine Learning Technologies. International Journal of Computer Applications. 184, 25 ( Aug 2022), 46-50. DOI=10.5120/ijca2022922311

@article{ 10.5120/ijca2022922311,
author = { Roberto Alexandre Dias, Rafaela Oliveira De Azevedo, Lucas Moino Armada },
title = { Smart Grid Management Modeling using Blockchain and Machine Learning Technologies },
journal = { International Journal of Computer Applications },
issue_date = { Aug 2022 },
volume = { 184 },
number = { 25 },
month = { Aug },
year = { 2022 },
issn = { 0975-8887 },
pages = { 46-50 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number25/32472-2022922311/ },
doi = { 10.5120/ijca2022922311 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:22:25.646772+05:30
%A Roberto Alexandre Dias
%A Rafaela Oliveira De Azevedo
%A Lucas Moino Armada
%T Smart Grid Management Modeling using Blockchain and Machine Learning Technologies
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 25
%P 46-50
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The present work consists of modeling a system for the maintenance of an infrastructure focused on the generation of electricity integrated into a management system for the sale of energy on the free market. Through this system, companies that provide micro grid generation infrastructure management services will be able to implement virtual power plants by aggregating microgrids implemented in their own or third-party physical spaces. In this way, the service provider will be able to manage the remote maintenance of its assets, aiming at the maintenance of the project specifications, the predictive maintenance of failures and verification of the loss of performance in components of the generation system. The system provides intelligence on contract management in a dynamic way, from data collected as well as computational cloud from consumers and aggregate generating units. Environmental parameters such as insulation, atmospheric and climatological conditions from weather forecast services, available in an open database, can be crossed with information from microgrids for capacity planning, in order to subsidize the sales contract management system of energy on the free market. By implementing the proposed system, it will be possible to define business models to commercially enable the adoption of the system. An example would be the model in which energy consumers act as service subscribers. In this way, the remuneration to the service provider can be made through a monthly fee or a portion of the energy generated in surplus. Acting in an aggregated way, the service provider will be able to carry out the best negotiation possible on the free market. Another example of a business model could be the remuneration of the owner of leased areas for the installation of energy generation microgrids, or power plants on land owned by the service provider.

References
  1. Jornal de Minas. Energias renováveis avançam como fontes alternativas. Obtido da internet em 10/09/2018. https://www.em.com.br/app/noticia/economia/2018/01/22/internas_economia,932501/ener gias-renovaveis-avancam.shtml.
  2. Ecoinventos. California da panels solares gratis a familias con pocos recursos. Obtido da internet em 10/09/2018. https://ecoinventos.com/california-dara-paneles-solares-gratis-afamilias-con-pocos-recursos/
  3. Folha de São Paulo. Assinatura de energia solar leva eletricidade limpa para empresas. Obtido da internet em 10/09/2018. https://www1.folha.uol.com.br/mercado/2017/08/1913190assinatura-de-energia-solar-leva-eletricidade-limpa-para-empresas.shtml.
  4. G1. Mercado livre já responde por 30% da energia consumida no Brasil; entenda como funciona. Obtido da internet em 10/09/2018. https://g1.globo.com/economia/noticia/2018/08/14/mercado-livre-ja-responde-por-30-daenergia-consumida-no-brasil-entenda-como-funciona.ghtml.
  5. Mashhour, Elaheh; Moghaddas-Tafreshi, Seyed Masoud. Bidding strategy of virtual power plant for participating in energy and spinning reserve markets—Part I: Problem formulation. IEEE Transactions on Power Systems, v. 26, n. 2, p. 949-956, 2011.
  6. Markovic, Dragan S. et al. Smart power grid and cloud computing. Renewable and Sustainable Energy Reviews, v. 24, p. 566-577, 2013.
  7. TUBALLA, Maria Lorena; ABUNDO, Michael Lochinvar. A review of the development of Smart Grid technologies. Renewable and Sustainable Energy Reviews, v. 59, p. 710-725, 2016.
  8. Rodriguez-Diaz, Enrique, Juan C. Vasquez, and Josep M. Guerrero. "Intelligent DC Homes in Future Sustainable Energy Systems: When efficiency and intelligence work together."Consumer Electronics Magazine, IEEE 5.1 (2016): 74-80.
  9. Cuevas, Jonathan Serrano, et al. "Distributed energy procurement and management in smart environments."Smart Cities Conference (ISC2), 2015 IEEE First International. IEEE, 2015.
  10. HIN, Jong-Ho; JUN, Hong-Bae. On condition based maintenance policy. Journal of Computational Design and Engineering, v. 2, n. 2, p. 119-127, 2015.
  11. MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3. Disponível na Internet em Março de 2019 em: http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
  12. Site da LoraWan Alliance. Disponível na Internet em Março de 2019 em: https://lora-alliance.org/about-lorawan.
  13. SUNSPEC Technology Overview. Disponível na Internet em março de 2019 em: https://sunspec.org/download/
  14. Yuan, M. Getting to know MQTT. Why MQTT is one of the best network protocols for the Internet of Things. 2017. https://www.ibm.com/developerworks/library/iot-mqtt-why-good-for-iot/index.html
  15. Hillar, G. C. MQTT Essentials – A lightweight IoT Protocol. 1 ed. Birmingham: Packt, 2017. 263p.
  16. Eclipse Foundation web page http://www.eclipse.org/org Accessed in11/15/2018.
  17. CERAMI, E. (2002) Web Services Essentials: Distributed Applications with XML-RPC, SOAP, UDDI & WSDL. O‘Reilly & Associates Inc., Sebastopol, CA.
  18. WOLTER, R. (2001). Web Services and Other Distributed Technologies Developer Center: XML Web Services Basics. [Online] Disponível: http://www.msdn.microsoft.com/library/en-us/dnwebsrv/html/webservbasics.asp
  19. LIANG, Yingyi; CAMPBELL, Roy H. Understanding and simulating the IEC 61850 standard. 2008.
  20. PENG, Y.; DONG, M.; ZUO, M. J. Current status of machine prognostics in condition-based maintenance: a review. Int J Adv Manuf Technol – Springer. 2009
  21. AMRUTHNATH, N.; GUPTA, T. Fault Class Prediction in Unsupervised Learning Using Model-Based Clustering Approach. 2018. International Conference on Information and Computer Technologies. 2018.
  22. Strączkiewicz M, Czop P., Barszcz T. Supervised and unsupervised learning process in damage classification of rolling element bearings, Diagnostyka. 2016.
  23. HUUHTANEN, T.; JUNG, A. Predictive maintenance of photovoltaic panels via deep learning. 2018 IEEE Data Science Workshop. 2018.
  24. OLIVEIRA, G. A. Microrredes em mercados de energia elétrica. UFSC, 2017.
Index Terms

Computer Science
Information Sciences

Keywords

Smart networks Demand side management Virtual Power Plant Energy Market Internet of Things Predictive Maintenance