CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Smart Alert System for Driver’s Drowsiness Detection System

by Sharath Kumar A.J., Sanjana P., Sanjay N., Sanjay K.Y., Shreya U. Kodgi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 24
Year of Publication: 2022
Authors: Sharath Kumar A.J., Sanjana P., Sanjay N., Sanjay K.Y., Shreya U. Kodgi
10.5120/ijca2022922282

Sharath Kumar A.J., Sanjana P., Sanjay N., Sanjay K.Y., Shreya U. Kodgi . Smart Alert System for Driver’s Drowsiness Detection System. International Journal of Computer Applications. 184, 24 ( Aug 2022), 21-26. DOI=10.5120/ijca2022922282

@article{ 10.5120/ijca2022922282,
author = { Sharath Kumar A.J., Sanjana P., Sanjay N., Sanjay K.Y., Shreya U. Kodgi },
title = { Smart Alert System for Driver’s Drowsiness Detection System },
journal = { International Journal of Computer Applications },
issue_date = { Aug 2022 },
volume = { 184 },
number = { 24 },
month = { Aug },
year = { 2022 },
issn = { 0975-8887 },
pages = { 21-26 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number24/32461-2022922282/ },
doi = { 10.5120/ijca2022922282 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:22:18.178873+05:30
%A Sharath Kumar A.J.
%A Sanjana P.
%A Sanjay N.
%A Sanjay K.Y.
%A Shreya U. Kodgi
%T Smart Alert System for Driver’s Drowsiness Detection System
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 24
%P 21-26
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In recent years, the detection of a sleepy driver has become a necessary procedure in order to prevent any roadaccidents, possibly globally. This project’s purpose is to develop a comprehensive warning system for intelligent cars that can automatically prevent damage caused by a tired driver from occurring. The human body is capable of drowsiness, and it occurs for a variety of causes. In order to avoid the cause of the accident, it is vital to create a powerful warning system.Video Stream Processing (VSP) is used in this study to construct a drowsy driver warning system that uses the EAR and Euclidean distance to evaluate video streams in the blink of an eye. Adoption of a facial recognition algorithm can be detected visually as well. Any time the IoT module detects driver fatigue, a warning message is sent out, along with information on the conflicting impact of local knowledge.

References
  1. Fouzia, Roopa Lakshmi R, Jayantkumar A Rathod, Ashwitha S Shetty, Supriya k "Driver Drowsiness Detection System Based on Visual Features" Proceedings of the 2nd International Conference on Inventive Communication and Computational Technologies (ICICCT 2018).
  2. Ratna Kaavya M, Ramya V, Ramya G Franklin "ALERT SYSTEM FOR DRIVER’S DROWSINESS USING IMAGE PROCESSING" 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN).
  3. Saravanaraj Sathasivam, Abd Kadir Mahamad, Sharifah Saon "Drowsiness Detection System using Eye Aspect Ratio Technique" 2020 IEEE Student Conference on Research and Development (SCOReD)
  4. Mr. S. S. Kulkarni, Mr. A. D. Harale and Mr. A. V. Thakur '' Image Processing for Driver’s Safety and Vehicle Control using Raspberry Pi andWebcam" IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI-2017).
  5. Janki Chandiwala and Shrushti Agarwal "Driver’s real-time Drowsiness Detection using Adaptable Eye Aspect Ratio and Smart Alarm System" 2021 7th International Conference on Advanced Computing & Communication Systems (ICACCS).
  6. Praveen Kumar V, Aravind P, Nachammai Devi Pooja S, Prathyush S, AngelDeborah S and Sarath Chandran K R "Driver AssistanceSystem using Raspberry Pi and Haar Cascade Classifiers" Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems (ICICCS 2021) IEEE Xplore Part Number: CFP21K74-ART; ISBN: 978-0-7381-1327-2
  7. Mohd Arif Ngasri, Iza Sazanita Isa, Siti Noraini Sulaiman, Zainal Hisham Che Soh Automated Stand-alone Video-based Microsleep Detection System by using EAR Technique 2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 29 Nov.–1 Dec. 2019, Penang
  8. Dr A Ravi T Raga Phanigna, Y Lenina, P Ramcharan, P Subrahmanya Teja Real Time Driver Fatigue Detection and Smart Rescue SystemProceedings of the International Conference on Electronics and Sustainable Communication Systems (ICESC 2020) IEEE Xplore Part Number
  9. Md. Yousuf Hossain IOT based Real-time Drowsy Driving Detection System for the Prevention of Road Accidents ICIIBMS 2018, Track 1:Image Processing, Computer Science and Information technology, Bangkok, Thailand
  10. Tereza Soukupova and JanCech, Real-Time Eye Blink Detection using Facial Landmarks, 21st Computer Vision Winter Workshop
  11. P.S. NAVEEN KUMAR, VALIVETI VENKATA PAVANI, Drowsiness Detection Using Neural Network Classification Based on Face Recognition, Journal of Information and Computational Science
  12. Bappaditya Mandal, Liyuan Li, Gang Sam Wang, and Jie Lin, Towards Detection of Bus Driver Fatigue Based on Robust Visual Analysis of Eye State, IEEE TRANSACTIONSON INTELLIGENT TRANSPORTATION SYSTEMS
  13. Ceerthi Bala U.K and Sarath TV. Internet of things based Intelligent Drowsiness Alert System, Proceedings of the Fifth International Conference on Communication and Electronics Systems (ICCES 2020)
  14. Gulbadan Sikander and Shahzad Anwar Driver Fatigue Detection Systems: A Review IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 20, NO. 6, JUNE 2019
  15. Esra Vural, Mujdat Cetin, Aytul Ercil, Gwen Littlewort, Marian Bartlett, Javier Movellan Machine learning systems for detecting driver drowsiness, Proceedings, Digital Signal Processing for in-Vehicle and mobile systems, Istanbul, Turkey, June 2007.
  16. S. E. Viswapriya, Singamsetti Balabalaji, Yedida Sireesha, A machine learning approach for driver drowsiness detection based on eye-state, International Journal of Engineering Research & Technology (IJERT), 2278-0181, Vol. 10 Issue 04, April-2021
Index Terms

Computer Science
Information Sciences

Keywords

IoT module Cloud Server EAR Raspberry pi sensors GSM module GPS module Blink count Image processing.