CFP last date
20 December 2024
Reseach Article

Hybrid 3DNet: Hyperspectral Image Classification with Spectral-spatial Dimension Reduction using 3D CNN

by Zareen Binta Zakaria, Md. Rashedul Islam
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 23
Year of Publication: 2022
Authors: Zareen Binta Zakaria, Md. Rashedul Islam
10.5120/ijca2022922270

Zareen Binta Zakaria, Md. Rashedul Islam . Hybrid 3DNet: Hyperspectral Image Classification with Spectral-spatial Dimension Reduction using 3D CNN. International Journal of Computer Applications. 184, 23 ( Jul 2022), 6-11. DOI=10.5120/ijca2022922270

@article{ 10.5120/ijca2022922270,
author = { Zareen Binta Zakaria, Md. Rashedul Islam },
title = { Hybrid 3DNet: Hyperspectral Image Classification with Spectral-spatial Dimension Reduction using 3D CNN },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2022 },
volume = { 184 },
number = { 23 },
month = { Jul },
year = { 2022 },
issn = { 0975-8887 },
pages = { 6-11 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number23/32455-2022922270/ },
doi = { 10.5120/ijca2022922270 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:22:13.645223+05:30
%A Zareen Binta Zakaria
%A Md. Rashedul Islam
%T Hybrid 3DNet: Hyperspectral Image Classification with Spectral-spatial Dimension Reduction using 3D CNN
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 23
%P 6-11
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Hyperspectral image classification (HSI) is a fantastic approach for assessing diverse land cover utilizing remotely sensed hyperspectral images and has been an established research topic. The term classification is used in remote sensing to refer to the process of assigning individual pixels to a group of classes. The utilization of CNN for HSI classification is likewise noticeable in ongoing works. These approaches are generally founded on 2-D CNN. For practical purposes, a 2D Convolutional Neural Network (CNN) is a viable option; however, these models do not provide high-quality feature maps because a 3D data cube, a Hyperspectral image,contains both two-dimensional spatial information (image feature) and one-dimensional spectral information (spectral-bands). Therefore, 3D CNN can be another option, yet it has high computational complexity because of the volume and spectral dimensions. This paper proposed a 3D CNN model that achieves excellent results by combining spatial and spectral feature maps. The performance of our proposed method is approved using three standard HSI datasets (Pavia University, Indian Pines, and Salinas), and the outcomes are further compared with several state-of-the-art methods.

References
  1. C.-I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, vol. 1. Springer Science & Business Media, 2003.
  2. J. Yang and J. Qian, "Hyperspectral image classification via multiscale joint collaborative representation with locally adaptive dictionary,"IEEE Geosci. Remote Sens. Lett., vol. 15, no. 1, pp. 112–116, Jan. 2018.
  3. L. Fang, N. He, S. Li, A. J. Plaza, and J. Plaza, "A new spatial–spectral feature extraction method for hyperspectral images using local covariance matrix representation,"IEEE Trans. Geosci. Remote Sens., vol. 56, no. 6, pp. 3534–3546, Jun. 2018.
  4. G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, J. Vila-Frances, and J. Calpe-Maravilla, "Composite kernels for hyperspectral image classification,"IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 93–97, Jan. 2006.
  5. J. Li, X. Huang, P. Gamba, J. M. Bioucas-Dias, L. Zhang, J. A. Benediktsson, and A. Plaza, "Multiple feature learning for hyperspectral image classification,"IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1592–1606, Mar. 2015.
  6. Qishuo Gao & Samsung Lim (2019) A probabilistic fusion of a support vector machine and a joint sparsity model for hyperspectral imagery classification, GIScience& Remote Sensing, 56:8, 1129-1147, DOI: 10.1080/15481603.2019.1623003
  7. Shrutika S. Sawant &Prabukumar Manoharan (2020) Unsupervised band selection based on weighted information entropy and 3D discrete cosine transform for hyperspectral image classification, International Journal of Remote Sensing, 41:10, 3948-3969, DOI: 10.1080/01431161.2019.1711242
  8. P. Gao, J. Wang, H. Zhang, and Z. Li, "Boltzmann entropy-based unsupervised band selection for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 16, no. 3, pp. 462–466, Mar. 2019.
  9. Liu, Sicong& Hu, Qing & Tong, Xiaohua& Xia, Junshi& Du, Qian &Samat, Alim & Ma, Xiaolong. (2020). A Multiscale Superpixel-Guided Filter Feature Extraction and Selection Approach for Classification of Very-High-Resolution Remotely Sensed Imagery. Remote Sensing. 12. 862. 10.3390/rs12050862.
  10. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097–1105.
  11. K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," 2014, arXiv: 1409.1556. [Online]. Available: https://arxiv.org/abs/1409.1556
  12. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, "Going Deeper with Convolutions," 2014, arXiv:1409.4842. [Online]. Available: https://arxiv.org/abs/1409.4842.
  13. K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition," 2015, arXiv:1512.03385. [Online]. Available: https://arxiv.org/abs/1512.03385.
  14. G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, "Densely Connected Convolutional Networks," 2016, arXiv:1608.06993. [Online]. Available: https://arxiv.org/abs/1608.06993.
  15. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 770–778.
  16. S. K. Roy, S. Manna, S. R. Dubey, and B. B. Chaudhuri, "LiSHT: Non-parametric linearly scaled hyperbolic tangent activation function for neural networks," 2019, arXiv:1901.05894. [Online]. Available: https://arxiv.org/abs/1901.05894
  17. K. He, G. Gkioxari, P. Dollar, and R. Girshick, "Mask R-CNN," in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2961–2969.
  18. S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards realtime object detection with region proposal networks," in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 91–99.
  19. C. Nagpal and S. R. Dubey, "A performance evaluation of convolutional neural networks for face anti spoofing," in Proc. IEEE Int. Joint Conf. Neural Netw. (IJCNN), Mar. 2019, pp. 1–8.
  20. S. H. S. Basha, S. Ghosh, K. K. Babu, S. R. Dubey, V. Pulabaigari, and S. Mukherjee, "RCCNet: An efficient convolutional neural network for histological routine colon cancer nuclei classification," in Proc. 15th Int. Conf. Control, Autom., Robot., Vis. (ICARCV), Nov. 2018, pp. 1222–1227.
  21. V. K. Repala and S. R. Dubey, "Dual CNN models for unsupervised monocular depth estimation," 2018, arXiv: 1804.06324. [Online]. Available: https://arxiv.org/abs/1804.06324
  22. Chakraborty, Tanmay, and Utkarsh Trehan. "Spectralnet: Exploring spatial-spectral waveletcnn for hyperspectral image classification." arXiv preprint arXiv:2104.00341 (2021).
  23. Y. Li, H. Zhang, and Q. Shen, "Spectral spatial classification of hyperspectral imagery with 3d convolutional neural network," Remote Sensing, vol. 9, p. 67, 01 2017.
  24. Hyperspectral Datasets Description, 2020 (accessed 2020-01-2),http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.
  25. T. Carneiro, R. V. M. Da N'obrega, T. Nepomuceno, G.-B. Bian, V. H. C. De Albuquerque, and P. P. Reboucas Filho, "Performance analysis of google colaboratory as a tool for accelerating deep learning applications," IEEE Access, vol. 6, pp. 61 677–61 685, 2018.
  26. F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.
  27. K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, "Deep supervised learning for hyperspectral data classification through convolutional neural networks," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2015, pp. 4959–4962.
  28. A. B. Hamida, A. Benoit, P. Lambert, and C. B. Amar, "3-D deep learning approach for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 56, no. 8, pp. 4420–4434, Aug. 2018.
Index Terms

Computer Science
Information Sciences

Keywords

3D Convolutional Neural Network (CNN) Dimension Reduction Hyperspectral Images (HSI) HSI Classification