CFP last date
20 December 2024
Reseach Article

Machine Learning based Chat Bot Recommendations for Mental Health Diseases

by S. Senthil, Immanuel D., Aaquib Nawaz S.
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 22
Year of Publication: 2022
Authors: S. Senthil, Immanuel D., Aaquib Nawaz S.
10.5120/ijca2022922268

S. Senthil, Immanuel D., Aaquib Nawaz S. . Machine Learning based Chat Bot Recommendations for Mental Health Diseases. International Journal of Computer Applications. 184, 22 ( Jul 2022), 42-49. DOI=10.5120/ijca2022922268

@article{ 10.5120/ijca2022922268,
author = { S. Senthil, Immanuel D., Aaquib Nawaz S. },
title = { Machine Learning based Chat Bot Recommendations for Mental Health Diseases },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2022 },
volume = { 184 },
number = { 22 },
month = { Jul },
year = { 2022 },
issn = { 0975-8887 },
pages = { 42-49 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number22/32452-2022922268/ },
doi = { 10.5120/ijca2022922268 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:22:11.414233+05:30
%A S. Senthil
%A Immanuel D.
%A Aaquib Nawaz S.
%T Machine Learning based Chat Bot Recommendations for Mental Health Diseases
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 22
%P 42-49
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A chat bot based totally system that may use machine getting to know strategies that allows you to answers the questions of the customers in a computerized fashion for universal questions. examine the chats of the person so as expect the form of medical ailment the consumer is having the use of Naive Bayes method along with natural language processing using schooling key phrases generated with the aid of analysis of top intellectual fitness web sites maintained by using doctors and hospitals. once the prediction of sickness is finished find the level of the ailment with the aid of having signs and symptoms based totally chat among the person and chat bot the use of single dimension k-means algorithm and aid vector machine aggregate,If the person is having low stage or medium degree kind of intellectual ailment the research can provide guidelines from professional docs with different treatment plans for every disease degree type.

References
  1. M. Boustani, C. M. Callahan, F. W. Unverzagt, M. G. Austrom, A. J. Perkins, B. A. Fultz, S. L. Hui, and H. C. Hendrie, “Implementing a screening and diagnosis program for dementia in primary care,” Journal of General Internal Medicine, vol. 20, no. 7, pp. 572–577, 2005.
  2. Alzheimer’s Society, “Dementia UK Report,” Tech. Rep., 2018.
  3. K. Lo´pez-de Ipin˜a, J.-B. Alonso, C. Travieso, J. Sole´-Casals, H. Egiraun, M. Faundez-Zanuy, A. Ezeiza, N. Barroso, M. Ecay- Torres, P. Martinez-Lage, and U. Lizardui, “On the Selection of Non-Invasive Methods Based on Speech Analysis Oriented to Automatic Alzheimer Disease Diagnosis,” Sensors, vol. 13, no. 12, pp. 6730–6745, 2013.Tavel, P. 2007 Modeling and Simulation Design. AK Peters Ltd.
  4. J. P. Lerch, J. Pruessner, A. P. Zijdenbos, D. L. Collins, S. J. Teipel, H. Hampel, and A. C. Evans, “Automated cortical thickness measure- ments from MRI can accurately separate Alzheimer’s patients from normal elderly controls,” Neurobiology of Aging, vol. 29, no. 1, pp.23–30, 2008.Forman, G. 2003. An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3 (Mar. 2003), 1289-1305.
  5. S. Klo¨ppel, C. M. Stonnington, J. Barnes, F. Chen, C. Chu, C. D. Good, I. Mader, L. A. Mitchell, A. C. Patel, C. C. Roberts, N. C. Fox, C. R. Jack, J. Ashburner, and R. S. J. Frackowiak, “Accuracy of dementia diagnosis - A direct comparison between radiologists and a computerized method,” Brain, vol. 131, no. 11, pp. 2969–2974, 2008.
  6. M. Boustani, L. Watson, B. Fultz, A. J. Perkins, and R. Druckenbrod, “Acceptance of dementia screening in continuous care retirement communities: A mailed survey,” International Journal of Geriatric Psychiatry, vol. 18, no. 9, pp. 780–786, 2003.
  7. So, D. Hooshyar, K. Park, and H. Lim, “Early Diagnosis of De- mentia from Clinical Data by Machine Learning Techniques,” Applied Sciences, vol. 7, no. 7, p. 651, 2017.
  8. J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning. Springer series in statistics New York, NY, USA:, 2001, vol. 1, no. 10.
  9. T. N. Tombaugh and N. J. McIntyre, “The mini-mental state examination: a comprehensive review.” Journal of the American Geriatrics Society, vol. 40, no. 9, pp. 922–935, 1992.
  10. M. W. Weiner, D. P. Veitch, P. S. Aisen, L. A. Beckett, N. J. Cairns, J. Cedarbaum, M. C. Donohue, R. C. Green, D. Harvey, C. R. Jack, W. Jagust, J. C. Morris, R. C. Petersen, A. J. Saykin, L. Shaw, P. M. Thompson, A. W. Toga, and J. Q. Trojanowski, “Impact of the Alzheimer’s Disease Neuroimaging Initiative, 2004 to 2014,” Alzheimer’s and Dementia, vol. 11, no. 7, pp. 865–884, 2015.
  11. Bayu Setiaji ; Ferry Wahyu Wibowo,"Chatbot Using a Knowledge in Database: Human-to-Machine Conversation Modeling", 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS),25-27 Jan. 2016
  12. Agnese Augello ; Giovanni Pilato ; Alberto Machi ; Salvatore Gaglio,"An Approach to Enhance Chatbot Semantic Power and Maintainability: Experiences within the FRASI Project",2012 IEEE Sixth International Conference on Semantic Computing,19-21 Sept. 2012.
Index Terms

Computer Science
Information Sciences

Keywords

Mental health data mining machine learning chat bot