CFP last date
20 December 2024
Reseach Article

How to Digitally Transform the Communication of the Weather Forecast Science using an Intelligent Systems Approach

by Dimitrios S. Stamoulis
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 17
Year of Publication: 2022
Authors: Dimitrios S. Stamoulis
10.5120/ijca2022922177

Dimitrios S. Stamoulis . How to Digitally Transform the Communication of the Weather Forecast Science using an Intelligent Systems Approach. International Journal of Computer Applications. 184, 17 ( Jun 2022), 31-35. DOI=10.5120/ijca2022922177

@article{ 10.5120/ijca2022922177,
author = { Dimitrios S. Stamoulis },
title = { How to Digitally Transform the Communication of the Weather Forecast Science using an Intelligent Systems Approach },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2022 },
volume = { 184 },
number = { 17 },
month = { Jun },
year = { 2022 },
issn = { 0975-8887 },
pages = { 31-35 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number17/32412-2022922177/ },
doi = { 10.5120/ijca2022922177 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:21:42.747593+05:30
%A Dimitrios S. Stamoulis
%T How to Digitally Transform the Communication of the Weather Forecast Science using an Intelligent Systems Approach
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 17
%P 31-35
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Communicating the science of weather forecasts to the general public has been a difficult task due to three main challenges inherent in any forecast: ambiguity of interpretation, uncertainty and probabilities logic. Moreover, forecasts are not meaningful and actionable to the recipients since they are not tailored to the perception of how they live the weather conditions. This paper presents a research roadmap for designing an intelligent system capable of producing massively personalized weather forecasts through a co-creation process as well as an abstract systems architecture model pertinent for the implementation that will enable experimentation and the proof of the concept.

References
  1. Sivle, A. D. and Aamodt, T. 2019. A dialogue‐based weather forecast: adapting language to end‐users to improve communication. Weather, 74(12), 436-441.
  2. Joslyn, S. and Savelli, S. 2010. Communicating forecast uncertainty: Public perception of weather forecast uncertainty. Meteorological Applications, 17(2), 180-195.
  3. Gigerenzer, G., Hertwig, R., Van Den Broek, E., Fasolo, B. and Katsikopoulos, K. V. 2005. A 30% chance of rain tomorrow: How does the public understand probabilistic weather forecasts? Risk Analysis: An International Journal, 25(3), 623-629.
  4. Rockwell, M., G. Dickson, and P. J. Bednarski, 2007: Cold, hard facts straight from the cellphone: Consumers begin turning to wireless devices for forecasts. Broadcasting Cable, 137, 20. [Available online at http://www.broadcastingcable.com/article/107837-Cold_ Hard_Facts_Straight_From_the_Cellphone.php.]
  5. Demuth, J. L., Lazo, J. K., & Morss, R. E. 2011. Exploring variations in people’s sources, uses, and perceptions of weather forecasts. Weather, Climate, and Society, 3(3), 177-192.
  6. Gbangou T, Sarku R, Slobbe EV, Ludwig F, Kranjac-Berisavljevic G and Paparrizos S. 2020. Coproducing Weather Forecast Information with and for Smallholder Farmers in Ghana: Evaluation and Design Principles. Atmosphere. 11(9):902.
  7. Vedeld, T., Hofstad, H., Mathur, M., Büker, P., and Stordal, F. 2020. Reaching out? Governing weather and climate services (WCS) for farmers. Environmental Science & Policy, 104, 208-216.
  8. Papathomas, T. V., Schiavone, J. A., and Julesz, B. 1988: Applications of computer graphics to the visualization of meteorological data. In Proceedings of the 15th annual conference on Computer graphics and interactive techniques, 327-334.
  9. Treinish, L. A. 1995: Visualization of scattered meteorological data.IEEE Computer Graphics and Applications, 15(4), 20-26.
  10. Koutek, M., and van der Neut, I.: Web-based 3D meteo visualization. 2018: 3D rendering farms from a new perspective. In Proceedings of the Workshop on Visualisation in Environmental Sciences, 8-17.
  11. Peters, H. P., Dunwoody, S., Allgaier, J., Lo, Y. Y.and Brossard, D. 2014. Public communication of science 2.0: Is the communication of science via the “new media” online a genuine transformation or old wine in new bottles? EMBO reports, 15(7), 749-753.
  12. Taylor, A. L., Kox, T., & Johnston, D. 2018. Communicating high impact weather: improving warnings and decision-making processes. International journal of disaster risk reduction, 30, 1-4.
  13. Hilton, T., Hughes, T., and Chalcraft, D.2012: Service co-creation and value realisation. Journal of Marketing Management, 28(13-14), 1504-1519.
  14. Payne, A. F., Storbacka, K., and Frow, P.2008: Managing the co-creation of value. Journal of the academy of marketing science, 36(1), 83-96.
  15. Prahalad, C. K., and Ramaswamy, V. 2004: Co-creation experiences: The next practice in value creation. Journal of interactive marketing, 18(3), 5-14.
  16. Ramaswamy, V. 2009. Co-creation of value—towards an expanded paradigm of value creation. Marketing Review St. Gallen, 26(6), 11-17. Ramaswamy, V.: 2009 Leading the transformation to co‐creation of value. Strategy and Leadership, 2009.
  17. Ranjan, K. R., and Read, S. 2019: Bringing the individual into the co-creation of value. Journal of Services Marketing.
  18. Sivle, A. D. and Aamodt, T. 2019. A dialogue‐based weather forecast: adapting language to end‐users to improve communication. Weather, 74(12), 436-441
  19. Vedeld, T., Hofstad, H., Mathur, M., Büker, P., and Stordal, F. 2020. Reaching out? Governing weather and climate services (WCS) for farmers. Environmental Science & Policy, 104, 208-216.
  20. Yager, R. R. 2003: Fuzzy logic methods in recommender systems. Fuzzy Sets and Systems, 136(2), 133-149.
  21. Hayward, G., and Davidson, V. 2003: Fuzzy logic applications. Analyst, 128(11), 1304-1306.
  22. Nagarnaik, P., and Thomas, A. 2015: Survey on recommendation system methods. In 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 1603-1608, IEEE.
  23. Singh, H., Gupta, M. M., Meitzler, T., Hou, Z. G., Garg, K. K., Solo, A. M., and Zadeh, L. A.2013: Real-life applications of fuzzy logic. Advances in Fuzzy Systems.
  24. Vassiliou, C., Stamoulis, D., and Martakos, D. 2006: A hybrid content-based clustering architecture: minimising uncertainty in personalised multimedia content. International Journal of Intelligent Systems Technologies and Applications, 1(3-4), 319-345.
  25. Xiaowei, S. 2006. An intelligent recommendation system based on fuzzy logic. In Informatics in Control, Automation and Robotics I (pp. 105-109). Springer, Dordrecht.
  26. Almohammadi, K., Hagras, H., Yao, B., Alzahrani, A., Alghazzawi, D., & Aldabbagh, G. 2017. A type-2 fuzzy logic recommendation system for adaptive teaching. Soft Computing, 21(4), 965-979.
  27. Razak, T. R., Hashim, M. A., Noor, N. M., Abd Halim, I. H., & Shamsul, N. F. F. 2014. Career path recommendation system for UiTM Perlis students using fuzzy logic. In 2014 5th International Conference on Intelligent and Advanced Systems (pp. 1-5). IEEE.
  28. Fischhoff, B. and Scheufele, D. A. 2013. The science of science communication. Proceedings of the National Academy of Sciences, 110(Supplement 3), 14031-14032.
Index Terms

Computer Science
Information Sciences

Keywords

Communication of science intelligent weather forecast personalized weather forecast digital transformation of the weather forecast communication.