We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Sum Geometric Arithmetic Means Index of Graphs

by Muaamar Mohsen Mohsen, Sultan Senan Mahde
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 17
Year of Publication: 2022
Authors: Muaamar Mohsen Mohsen, Sultan Senan Mahde
10.5120/ijca2022922155

Muaamar Mohsen Mohsen, Sultan Senan Mahde . Sum Geometric Arithmetic Means Index of Graphs. International Journal of Computer Applications. 184, 17 ( Jun 2022), 1-5. DOI=10.5120/ijca2022922155

@article{ 10.5120/ijca2022922155,
author = { Muaamar Mohsen Mohsen, Sultan Senan Mahde },
title = { Sum Geometric Arithmetic Means Index of Graphs },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2022 },
volume = { 184 },
number = { 17 },
month = { Jun },
year = { 2022 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number17/32407-2022922155/ },
doi = { 10.5120/ijca2022922155 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:21:39.182400+05:30
%A Muaamar Mohsen Mohsen
%A Sultan Senan Mahde
%T Sum Geometric Arithmetic Means Index of Graphs
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 17
%P 1-5
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, the concept of sum geometric arithmetic means index of a graph G, denoted by SGAM(G) is introduced and sum geometric arithmetic means index SGAM(G) of few families of graphs is computed. Further, we establish the bounds for sum geometric arithmetic means index.

References
  1. M. S. Abdelgader, C. Wang and S. A. Mohammed, Computation of topological indices of some special graph, Maths., 6 (33) (2018), 1-15.
  2. M. Alaeiyan, M. R. Farahani and M. K. Jamil, Computation of the fifth geometric-arithmetic index for polycyclic aromatic hy-drocarbons PAHk, Appl. Maths. Nlin. Sci., 1 (1) (2016), 283-290.
  3. L. Beineke and R. Wilson, Topics in Topological Graph Theory, Cambridge University Press, New York, 2009.
  4. A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer, New York, 2011.
  5. K. C. Das, I. Gutman and B. Furtula, On the first geometric– arithmetic index of graphs, Disc. Appl. Maths., 159 (2011), 2030-2037.
  6. K. C. Das, I. Gutman and B. Furtula, Survey on geometricarithmetic indices of graphs, MATCH Commun. Math. Comput. Chem., 65 (2011), 595-644.
  7. K. C. Das and N. Trinajsti´c, Comparison between geometricarithmetic indices, Croat. Chem. Acta, 85 (3) (2012), 353- 357.
  8. M. R. Farahani, Computing some connectivity indices of nanotubes, Advances in Materials and Corrosion, 1 (2012), 57- 60.
  9. M. R. Farahani, Fifth geometric-arithmetic index of TURC4C8(S) nanotubes, Journal of Chemica Acta, 2 (1) (2013), 62-64.
  10. M. R. Farahani, Computing Randic, geometric-arithmetic and atom-bond connectivity indices of circumcoronene series of benzenoid, Int. J. Chem. Model, 5 (4) (2013), 485-493.
  11. J. Gross and J. Yellen, Handbook of Graph Theory, Disc. Maths. Appli., 7, CRC PRESS, United States of America, 2003.
  12. J.W. Grossman, F. Harary and M. Klawe, Generalized ramsey theorem for graphs, X: Double stars, Discrete Mathematics, 28 (1979), 247-254.
  13. D. Jungnickel, Graphs, Networks and Algorithms, Second Edition, Springer, Germany, 2005.
  14. R. Kanabur and Shegehalliv, Arithmetic-geometric Indices of Some Class of Graph, Researchgate, 2016.
  15. S. Moradi, S. Babaranim, M. Ghorbani. (2011), Two types of geometric-arithmetic index of V-phenylenic nanotube, Iranian Journal of Mathematical Chemistry, 2 (2), 109-117
  16. M. R. Rajesh Kanna and B. N. Dharmendra, Minimum covering distance energy of a graph, Appl. Math. Sci., 7 ( 111) ( 2013), 5525 - 5536.
  17. P. S. K. Reddy, K. N. Prakasha and Gavirangaiah, Minimum dominating color energy of a graph, Int. J. Math. Combin., 3(2017), 22-31.
  18. M. Robbiano, E. A. Martins, R. Jim´enez, and B. Martin, Upper bounds on the Laplacian energy of some graphs, MATCH Commun. Math. Comput.Chem., 64 (2010), 97-110.
  19. J. M. Rodrıgueza, J. M. Sigarreta, Spectral study of the geometric-arithmetic index, MATCH Commun. Math. Comput. Chem., 74 (2015), 121-135.
  20. V. S. Shegehall, R. Kanabur, Arithmetic-geometric indices of path graph, J. Math. Comput. Sci., 16 (2015), 19-24.
  21. E. Scheinerman and D. Ullman, Fractional Graph Theory, John Wiley and Sons, Paris, France, 2008.
  22. C. Vasudev, Graph Theory with Applications, New Age Int. (P) Ltd., New Delhi, 2007.
  23. D. Vukiˇcevi´c, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, it J. Math. Chem., 46 (2009), 1369-1376.
  24. L. Xiao, S. Chen, Z. Guo, Q. Chen, The geometric-arithmetic index of benzenoid systems and phenylenes, Int. J. Contemp. Math. Sciences, 5 (45) (2010), 2225-2230.
Index Terms

Computer Science
Information Sciences

Keywords

Graph Molecular graph Sum geometric arithmetic means index of a graph G