CFP last date
20 January 2025
Reseach Article

Heat Wave Prediction using Machine Learning Techniques: A Review

by F.S. Sourjah, W.P.J. Pemarathne
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 16
Year of Publication: 2022
Authors: F.S. Sourjah, W.P.J. Pemarathne
10.5120/ijca2022922162

F.S. Sourjah, W.P.J. Pemarathne . Heat Wave Prediction using Machine Learning Techniques: A Review. International Journal of Computer Applications. 184, 16 ( Jun 2022), 33-40. DOI=10.5120/ijca2022922162

@article{ 10.5120/ijca2022922162,
author = { F.S. Sourjah, W.P.J. Pemarathne },
title = { Heat Wave Prediction using Machine Learning Techniques: A Review },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2022 },
volume = { 184 },
number = { 16 },
month = { Jun },
year = { 2022 },
issn = { 0975-8887 },
pages = { 33-40 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number16/32404-2022922162/ },
doi = { 10.5120/ijca2022922162 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:21:37.023049+05:30
%A F.S. Sourjah
%A W.P.J. Pemarathne
%T Heat Wave Prediction using Machine Learning Techniques: A Review
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 16
%P 33-40
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Heat waves have become one of the major calamities in the present world because of global warming and the rise in temperature. Exceptional temperatures that are recorded over a period can be known as extreme heat events or heat waves. Even though heat waves are less exciting than other disasters like floods, tornados and earthquakes, they are an equivalent hazard to the existence of life on earth. It is critical to forecast heatwaves throughout the year and take the necessary precautions to avoid losses. Due to the advancement in machine learning (ML) techniques, ML can become handy in predicting heat waves. Our main objective is to study different existing ML algorithms that can be used to predict extreme heat events. The main approach to this study is to review the existing studies of machine learning techniques like the use of regression algorithm, K-Nearest Neighbour algorithm, Deep Learning algorithms and other significant ML algorithms that are being used to predict heatwaves and heatwave-related predictions. This research study will help to compare and contrast different ML algorithms to help this research derive the best ML model that can be developed for future heat wave predictions.

References
  1. X. Gu et al., “Attribution of Global Soil Moisture Drying to Human Activities: A Quantitative Viewpoint,” Geophys. Res. Lett., vol. 46, no. 5, pp. 2573–2582, Mar. 2019, doi: 10.1029/2018GL080768.
  2. M. Munasinghe, “Rising temperatures, rising risks,” Finance Dev., vol. 45, Mar. 2008.
  3. W. Marx, R. Haunschild, and L. Bornmann, “Heat waves: a hot topic in climate change research,” Theor. Appl. Climatol., vol. 146, no. 1–2, pp. 781–800, Oct. 2021, doi: 10.1007/s00704-021-03758-y.
  4. P. Martinez and E. R. Bandala, “Heat Waves: A Growing Climate Change-related Risk,” p. 4.
  5. M.-A. P. F and B. E. R., “Heat Waves: Health Effects, Observed Trends and Climate Change,” in Extreme Weather, P. J. Sallis, Ed. InTech, 2018. doi: 10.5772/intechopen.75559.
  6. R. Ortlepp and D. Schiela, “Perspectives of climate change adaptation of building areas against heat waves,” IOP Conf. Ser. Mater. Sci. Eng., vol. 615, no. 1, p. 012004, Oct. 2019, doi: 10.1088/1757-899X/615/1/012004.
  7. J. Safieh, R. Dara, and J. Forough, “Effect of climate change on heat waves in the South Sea of Iran,” Ukr. J. Ecol., vol. 10, pp. 87–93, Oct. 2020, doi: 10.15421/2020_211.
  8. N. Khan, S. Shahid, L. Juneng, K. Ahmed, T. Ismail, and N. Nawaz, “Prediction of heat waves in Pakistan using quantile regression forests,” Atmospheric Res., vol. 221, pp. 1–11, Jun. 2019, doi: 10.1016/j.atmosres.2019.01.024.
  9. M. Wang, X. Yan, J. Liu, and X. Zhang, “The contribution of urbanization to recent extreme heat events and a potential mitigation strategy in the Beijing–Tianjin–Hebei metropolitan area,” Theor. Appl. Climatol., vol. 114, no. 3–4, pp. 407–416, Nov. 2013, doi: 10.1007/s00704-013-0852-x.
  10. V. Shandas, J. Voelkel, J. Williams, and J. Hoffman, “Integrating Satellite and Ground Measurements for Predicting Locations of Extreme Urban Heat,” Climate, vol. 7, no. 1, p. 5, Jan. 2019, doi: 10.3390/cli7010005.
  11. M. Zumwald, B. Knüsel, D. N. Bresch, and R. Knutti, “Mapping urban temperature using crowd-sensing data and machine learning,” Urban Clim., vol. 35, p. 100739, Jan. 2021, doi: 10.1016/j.uclim.2020.100739.
  12. S. Lee et al., “Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using Machine Learning-Based Lead Detection,” Remote Sens., vol. 8, no. 9, p. 698, Aug. 2016, doi: 10.3390/rs8090698.
  13. S. Yoo, J. Im., and J. E. Wagner, “Variable selection for hedonic model using machine learning approaches: A case study in Onondaga County, NY,” Landsc. Urban Plan., vol. 107, no. 3, pp. 293–306, Sep. 2012, doi: 10.1016/j.landurbplan.2012.06.009.
  14. R. Özçelik, M. J. Diamantopoulou, J. R. Brooks, and H. V. Wiant, “Estimating tree bole volume using artificial neural network models for four species in Turkey,” J. Environ. Manage., vol. 91, no. 3, pp. 742–753, Jan. 2010, doi: 10.1016/j.jenvman.2009.10.002.
  15. S. Tiryaki and A. Aydın, “An artificial neural network model for predicting compression strength of heat-treated woods and comparison with a multiple linear regression model,” Constr. Build. Mater., vol. 62, pp. 102–108, Jul. 2014, doi: 10.1016/j.conbuildmat.2014.03.041.
  16. P. J. L. Adeodato, A. L. Arnaud, G. C. Vasconcelos, R. C. L. V. Cunha, and D. S. M. P. Monteiro, “MLP ensembles improve long term prediction accuracy over single networks,” Int. J. Forecast., vol. 27, no. 3, pp. 661–671, Jul. 2011, doi: 10.1016/j.ijforecast.2009.05.029.
  17. D. Cho, C. Yoo, J. Im, and D. Cha, “Comparative Assessment of Various Machine Learning‐Based Bias Correction Methods for Numerical Weather Prediction Model Forecasts of Extreme Air Temperatures in Urban Areas,” Earth Space Sci., vol. 7, no. 4, Apr. 2020, doi: 10.1029/2019EA000740.
  18. R. Dziadek, F. Ferraccioli, and K. Gohl, “High geothermal heat flow beneath Thwaites Glacier in West Antarctica inferred from aeromagnetic data,” Commun. Earth Environ., vol. 2, no. 1, p. 162, Dec. 2021, doi: 10.1038/s43247-021-00242-3.
  19. S. Rezvanbehbahani, L. A. Stearns, A. Kadivar, J. D. Walker, and C. J. van der Veen, “Predicting the Geothermal Heat Flux in Greenland: A Machine Learning Approach,” Geophys. Res. Lett., vol. 44, no. 24, p. 12,271-12,279, 2017, doi: 10.1002/2017GL075661.
  20. M. Lösing and J. Ebbing, “Predicting Geothermal Heat Flow in Antarctica With a Machine Learning Approach,” J. Geophys. Res. Solid Earth, vol. 126, no. 6, Jun. 2021, doi: 10.1029/2020JB021499.
  21. I. Buo, V. Sagris, and J. Jaagus, “Gap-Filling Satellite Land Surface Temperature Over Heatwave Periods With Machine Learning,” IEEE Geosci. Remote Sens. Lett., pp. 1–5, 2021, doi: 10.1109/LGRS.2021.3068069.
  22. S. B. H. S. Asadollah, N. Khan, A. Sharafati, S. Shahid, E.-S. Chung, and X.-J. Wang, “Prediction of heat waves using meteorological variables in diverse regions of Iran with advanced machine learning models,” Stoch. Environ. Res. Risk Assess., Oct. 2021, doi: 10.1007/s00477-021-02103-z.
  23. T. Li, F. Ding, Q. Sun, Y. Zhang, and P. L. Kinney, “Heat stroke internet searches can be a new heatwave health warning surveillance indicator,” Sci. Rep., vol. 6, no. 1, p. 37294, Dec. 2016, doi: 10.1038/srep37294.
  24. M. B. Kursa and W. R. Rudnicki, “Feature Selection with the Boruta Package,” J. Stat. Softw., vol. 36, no. 11, 2010, doi: 10.18637/jss.v036.i11.
  25. Y. Wang et al., “A random forest model to predict heatstroke occurrence for heatwave in China,” Sci. Total Environ., vol. 650, pp. 3048–3053, Feb. 2019, doi: 10.1016/j.scitotenv.2018.09.369.
  26. R. S. Kovats and S. Hajat, “Heat Stress and Public Health: A Critical Review,” Annu. Rev. Public Health, vol. 29, no. 1, pp. 41–55, 2008, doi: 10.1146/annurev.publhealth.29.020907.090843.
  27. K. M. A. Gabriel and W. R. Endlicher, “Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany,” Environ. Pollut., vol. 159, no. 8, pp. 2044–2050, Aug. 2011, doi: 10.1016/j.envpol.2011.01.016.
  28. D. Scherer, U. Fehrenbach, T. Lakes, S. Lauf, F. Meier, and C. Schuster, “Quantification of heat-stress related mortality hazard, vulnerability and risk in Berlin, Germany,” ERDE – J. Geogr. Soc. Berl., vol. 144, no. 3–4, Art. no. 3–4, 2013, doi: 10.12854/erde-144-17.
  29. B. Dousset et al., “Satellite monitoring of summer heat waves in the Paris metropolitan area,” Int. J. Climatol., vol. 31, no. 2, pp. 313–323, 2011, doi: 10.1002/joc.2222.
  30. S. Vulova, F. Meier, D. Fenner, H. Nouri, and B. Kleinschmit, “Summer Nights in Berlin, Germany: Modeling Air Temperature Spatially with Remote Sensing, Crowdsourced Weather Data, and Machine Learning,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 5074–5087, 2020, doi: 10.1109/JSTARS.2020.3019696.
  31. C. S. Bangera, P. S. Kotian, C. Dias, T. Divya, and G. Aithal, “Flood and Heat Wave Prediction using Weighted Moving Average, Anomaly Detection and K-Nearest Neighbours for the City Of Mangalore,” in 2018 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Mangalore (Mangaluru), India, Aug. 2018, pp. 93–97. doi: 10.1109/DISCOVER.2018.8674113.
  32. N. Khan, D. A. Sachindra, S. Shahid, K. Ahmed, M. S. Shiru, and N. Nawaz, “Prediction of droughts over Pakistan using machine learning algorithms,” Adv. Water Resour., vol. 139, p. 103562, May 2020, doi: 10.1016/j.advwatres.2020.103562.
  33. D. Barriopedro, E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, “The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe,” Science, vol. 332, no. 6026, pp. 220–224, Apr. 2011, doi: 10.1126/science.1201224.
  34. F. E. L. Otto, N. Massey, G. J. van Oldenborgh, R. G. Jones, and M. R. Allen, “Reconciling two approaches to attribution of the 2010 Russian heat wave,” Geophys. Res. Lett., vol. 39, no. 4, 2012, doi: 10.1029/2011GL050422.
  35. S. Y. Philip et al., “Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada June 2021,” Earth Syst. Dyn. Discuss., pp. 1–34, Nov. 2021, doi: 10.5194/esd-2021-90.
  36. R. García-Herrera, J. Díaz, R. Trigo, J. Luterbacher, and E. Fischer, “A Review of the European Summer Heat Wave of 2003,” Crit. Rev. Environ. Sci. Technol., vol. 40, pp. 267–306, Mar. 2010, doi: 10.1080/10643380802238137.
  37. J. A. Weyn, D. R. Durran, and R. Caruana, “Can Machines Learn to Predict Weather? Using Deep Learning to Predict Gridded 500-hPa Geopotential Height From Historical Weather Data,” J. Adv. Model. Earth Syst., vol. 11, no. 8, pp. 2680–2693, 2019, doi: 10.1029/2019MS001705.
  38. J. Johnson and T. Khoshgoftaar, “The Effects of Data Sampling with Deep Learning and Highly Imbalanced Big Data,” Inf. Syst. Front., vol. 22, Oct. 2020, doi: 10.1007/s10796-020-10022-7.
  39. V. Jacques-Dumas, F. Ragone, P. Borgnat, P. Abry, and F. Bouchet, “Deep Learning-based Extreme Heatwave Forecast,” ArXiv210309743 Phys., Oct. 2021, Accessed: Nov. 29, 2021. [Online]. Available: http://arxiv.org/abs/2103.09743
  40. N. J. Holbrook et al., “Keeping pace with marine heatwaves,” Nat. Rev. Earth Environ., vol. 1, no. 9, pp. 482–493, Sep. 2020, doi: 10.1038/s43017-020-0068-4.
  41. D. Ning, V. Vetrova, K. Bryan, and S. Delaux, “Deep Learning for Spatiotemporal Anomaly Forecasting: A Case Study of Marine Heatwaves,” presented at the ICML 2021 Workshop on Tackling Climate Change with Machine Learning, Jul. 2021. Accessed: Nov. 29, 2021. [Online]. Available: https://www.climatechange.ai/papers/icml2021/87
  42. S. Jung, Y. J. Kim, S. Park, and J. Im, “Prediction of Sea Surface Temperature and Detection of Ocean Heat Wave in the South Sea of Korea Using Time-series Deep-learning Approaches,” Korean J. Remote Sens., vol. 36, no. 5_3, pp. 1077–1093, Oct. 2020, doi: 10.7780/KJRS.2020.36.5.3.7.
  43. A.- Al Kafy et al., “The operational role of remote sensing in assessing and predicting land use/land cover and seasonal land surface temperature using machine learning algorithms in Rajshahi, Bangladesh,” Appl. Geomat., Aug. 2021, doi: 10.1007/s12518-021-00390-3.
  44. B. Wang et al., “Rethinking Indian monsoon rainfall prediction in the context of recent global warming,” Nat. Commun., vol. 6, no. 1, p. 7154, Nov. 2015, doi: 10.1038/ncomms8154.
  45. N. Khan, S. Shahid, T. B. Ismail, and F. Behlil, “Prediction of heat waves over Pakistan using support vector machine algorithm in the context of climate change,” Stoch. Environ. Res. Risk Assess., vol. 35, no. 7, pp. 1335–1353, Jul. 2021, doi: 10.1007/s00477-020-01963-1.
  46. Tushar Kanti Routh et al., “Artificial neural network-based temperature prediction and its impact on solar cell,” in 2012 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, May 2012, pp. 897–902. doi: 10.1109/ICIEV.2012.6317369.
  47. A. Kabbori, J. Antari, R. Iqdour, and Z. E. Abidine El Morjani, “Temperature Prediction using Time Series Time-Delay Neural Networks,” in 2019 7th International Renewable and Sustainable Energy Conference (IRSEC), Agadir, Morocco, Nov. 2019, pp. 1–4. doi: 10.1109/IRSEC48032.2019.9078299.“randomforest2001.pdf.”
  48. M. Park, D. Jung, S. Lee, and S. Park, “Heatwave Damage Prediction Using Random Forest Model in Korea,” Appl. Sci., vol. 10, no. 22, p. 8237, Nov. 2020, doi: 10.3390/app10228237.
  49. D.-W. Kim, “Weekly heat wave death prediction model using zero-inflated regression approach,” p. 16.
  50. D.-W. Kim, R. C. Deo, J.-H. Chung, and J.-S. Lee, “Projection of heat wave mortality related to climate change in Korea,” Nat. Hazards, vol. 80, no. 1, pp. 623–637, Jan. 2016, doi: 10.1007/s11069-015-1987-0.
Index Terms

Computer Science
Information Sciences

Keywords

Heat Waves Global Warming Hazard Machine Learning (ML) Prediction