CFP last date
20 January 2025
Reseach Article

Security of Medical Images During Transmission: A Systematic Review

by K. Prabhavathi, M.B. Anandaraju
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 15
Year of Publication: 2022
Authors: K. Prabhavathi, M.B. Anandaraju
10.5120/ijca2022922136

K. Prabhavathi, M.B. Anandaraju . Security of Medical Images During Transmission: A Systematic Review. International Journal of Computer Applications. 184, 15 ( Jun 2022), 8-13. DOI=10.5120/ijca2022922136

@article{ 10.5120/ijca2022922136,
author = { K. Prabhavathi, M.B. Anandaraju },
title = { Security of Medical Images During Transmission: A Systematic Review },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2022 },
volume = { 184 },
number = { 15 },
month = { Jun },
year = { 2022 },
issn = { 0975-8887 },
pages = { 8-13 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number15/32393-2022922136/ },
doi = { 10.5120/ijca2022922136 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:21:29.894701+05:30
%A K. Prabhavathi
%A M.B. Anandaraju
%T Security of Medical Images During Transmission: A Systematic Review
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 15
%P 8-13
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Recently the use of applications of telemedicine using medical images has increased rapidly. Author of this Article presents various medical images types and threat that can endanger the transmission of medical images. This overview paper summarizes existing security approaches to medical data with various parameters related with that. A detailed picture of technologies related to security of a system like homomorphism, steganography and cryptography is provided, along with a complete overview of current research. The purpose of this article summarize, evaluate various algorithms with different approaches depending on many parameters like MSE, PSNR, NC, BER and so on.

References
  1. Noshadian, S., Ebrahimzade, A., Kazemitabar, S.J.: Optimizing chaos based image encryption. Multimedia Tools Appl. 77(19):25,569–25,590 (2018)
  2. Furht, B., Muharemagic, E., Socek, D.: Multimedia encryption and watermarking, vol 28. Springer Science & Business Media (2006)
  3. Liu, Z., Wang, Y., Zhao, Y., Zhang, L.Y.: A stream cipher algorithm based on 2d coupled map lattice and partitioned cellular automata. Nonlinear Dyn. 101(2), 1383–1396 (2020)
  4. Xy, Wang, Xm, Bao: A novel block cryptosystem based on the coupled chaotic map lattice. Nonlinear Dyn. 72(4), 707–715 (2013)
  5. Peng, Z., Yu, W., Wang, J., Zhou, Z., Chen, J., Zhong, G.: Secure communication based on microcontroller unit with a novel fivedimensionalhyperchaotic system. Arab. J. Sci. Eng., pp. 1–16 (2021)
  6. Som, S., Dutta, S., Singha, R., Kotal, A., Palit, S.: Confusion and diffusion of color images with multiple chaotic maps and chaosbased pseudorandom binary number generator. Nonlinear Dyn. 80(1), 615–627 (2015)
  7. Xu, H., Tong, X., Meng, X.: An efficient chaos pseudo-random number generator applied to video encryption. Optik 127(20), 9305–9319 (2016)
  8. Lan, R., He, J., Wang, S., Gu, T., Luo, X.: Integrated chaotic systems for image encryption. Signal Processing 147, 133–145 (2018)
  9. Sankpal, P.R., Vijaya, P.: Image encryption using chaotic maps: a survey. In: 2014 Fifth international Conference on Signal and image Processing, IEEE, pp. 102–107 (2014)
  10. Wei-Bin, C., Xin, Z.: Image encryption algorithm based on Henon chaotic system. In: 2009 International Conference on Image Analysis and Signal Processing, IEEE, pp. 94–97 (2009)
  11. Krishna, P.R., Teja, C.V.S., Thanikaiselvan, V., et al.: A chaos based image encryption using tinkerbell map functions. In: 2018 Second International Conference on Electronics, pp. 578– 582. Communication and Aerospace Technology (ICECA), IEEE (2018)
  12. Pak, C., Huang, L.: A new color image encryption using combination of the 1d chaotic map. Signal Process. 138, 129–137 (2017)
  13. Hua, Z., Jin, F., Xu, B., Huang, H.: 2d logistic-sine-coupling map for image encryption. Signal Process. 149, 148–161 (2018) 35. Shan, L., Qiang, H., Li, J., Zq, Wang: Chaotic optimization algorithm based on tent map. Control Decision 20(2), 179–182 (2005)
  14. Fang, D., Sun, S.: A new secure image encryption algorithm based on a 5d hyperchaotic map. Plos one 15(11):e0242,110 (2020)
  15. Kiran, P., and B. D. Parameshachari. "Resource Optimized Selective Image Encryption of Medical Images Using Multiple Chaotic Systems." Microprocessors and Microsystems (2022): 104546.
  16. Kiran and B. D. Parameshachari, “Selective Image Encryption of Medical Images Based on Threshold Entropy and Arnold Cat Map”. Bioscience Biotechnology Research Communications. 13. 194-202. 10.21786/bbrc/13.13/27.
  17. Kiran, P., H. T. Panduranga, and J. Yashwanth. "Efficient Secure Medical Image Transmission Based on Brownian System." In Cybersecurity, pp. 207-220. Springer, Cham, 2022.
  18. Kiran, Parameshachari, B. D., and H. T. Panduranga. "Secure transfer of images using pixel-level and bit-level permutation based on knight tour path scan pattern and henon map." In Cognitive Informatics and Soft Computing, pp. 271-283. Springer, Singapore, 2021.
  19. Q. Ran, T. Zhao, L. Yuan, J. Wang, L. Xu, Vector power multiple-parameter fractional Fourier transform of image encryption algorithm, Optics Lasers Eng. 62 (2014) 80–86, https://doi.org/10.1016/j.optlaseng.2014.05.008.
  20. ] S.C. Pei, W.L. Hsue, The multiple-parameter discrete fractional Fourier transform, IEEE Signal Process Lett. 13 (6) (2006) 329–332. 10.1109/ LSP.2006.871721.
  21. J. Lang, R. Tao, Q. Ran, Y. Wang, The multiple-parameter fractional Fourier transform, Sci. China Series F: Information Sci. 51 (8) (2008) 1010, https://doi. org/10.1007/s11432-008-0073-6.
  22. S.C. Pei, W.L. Hsue, Random discrete fractional Fourier transform, IEEE Signal Process Lett. 16 (12) (2009) 1015–1018, https://doi.org/10.1109/ LSP.2009.2027646.
  23. R. Tao, X.Y. Meng, Y. Wang, Image encryption with multiorders of fractional Fourier transforms, IEEE Trans. Information Forensics Security 5 (4) (2010) 734–738, https://doi.org/10.1109/TIFS.2010.2068289.
  24. X. Kang, R. Tao, F. Zhang, Multiple-parameter discrete fractional transform and its applications, IEEE Trans. Signal Process. 64 (13) (2016) 3402–3417, https:// doi.org/10.1109/TSP.2016.2544740.
  25. Q. Ran, D.S. Yeung, E.C. Tsang, Q. Wang, General multifractional Fourier transform method based on the generalized permutation matrix group, IEEE Trans. Signal Process. 53 (1) (2005) 83–98, https://doi.org/10.1109/ TSP.2004.837397.
  26. F. Zhang, Y. Hu, R. Tao, Y. Wang New fractional matrix with its applications in image encryption, Optics Laser Technol., 64 (2014) 82–93. doi: 10.1016/j. optlastec.2014.03.020.
  27. Q. Ran, H. Zhang, J. Zhang, L. Tan, J. Ma Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform, Optics Lett., 34(11) (2009) 1729–1731. doi: 10.1364/OL.34.001729.
  28. A.M. Youssef, On the security of a cryptosystem based on multiple-parameters discrete fractional Fourier transform, IEEE Signal Process. Lett., 15 (2008) 77– 78. doi: 10.1109/LSP.2007.910299.
  29. T. Zhao, Q. Ran, L. Yuan, Y. Chi, J. Ma Security of image encryption scheme based on multi-parameter fractional Fourier transform. Optics Commun., 376 (2016) 47–51. doi: 10.1016/j.optcom.2016.05.016.
  30. C. Fontaine and F. Galand, “A survey of homomorphic encryption for nonspecialists,” EURASIP Journal on Information Security, vol. 2007, pp. 1–10, 2007.
  31. P. V. Parmar, S. B. Padhar, S. N. Patel, N. I. Bhatt, and R. H. Jhaveri, “Survey of various homomorphic encryption algorithms and schemes,” International Journal of Computer Applications, vol. 91, no. 8, 2014.
  32. V. Biksham and D. Vasumathi, “Homomorphic encryption techniques for securing data in cloud computing: A survey,” International Journal of Computer Applications, vol. 975, p. 8887, 2017.
  33. A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic encryption schemes: Theory and implementation,” ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–35, 2018.
  34. B. Alaya, L. Laouamer, and N. Msilini, “Homomorphic encryption systems statement: Trends and challenges,” Computer Science Review, vol. 36, p. 100235, 2020.
  35. Z. Brakerski, “Fundamentals of fully homomorphic encryption-a survey.” in Electronic Colloquium on Computational Complexity (ECCC), vol. 25, 2018, p. 125.
  36. S. S. Sathya, P. Vepakomma, R. Raskar, R. Ramachandra, and S. Bhattacharya, “A review of homomorphic encryption libraries for secure computation,” arXiv preprint arXiv:1812.02428, 2018.
  37. M. Alloghani, M. M. Alani, D. Al-Jumeily, T. Baker, J. Mustafina, A. Hussain, and A. J. Aljaaf, “A systematic review on the status and progress of homomorphic encryption technologies,” Journal of Information Security and Applications, vol. 48, p. 102362, 2019.
Index Terms

Computer Science
Information Sciences

Keywords

Cryptography Watermarking Medical image Steganography Attack