CFP last date
20 January 2025
Reseach Article

An Overview of Chatbots using ML Algorithms in Agricultural Domain

by Pravinkrishnan K., Prabavathy Balasundaram, Lekshmi Kalinathan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Number 11
Year of Publication: 2022
Authors: Pravinkrishnan K., Prabavathy Balasundaram, Lekshmi Kalinathan
10.5120/ijca2022922082

Pravinkrishnan K., Prabavathy Balasundaram, Lekshmi Kalinathan . An Overview of Chatbots using ML Algorithms in Agricultural Domain. International Journal of Computer Applications. 184, 11 ( May 2022), 15-22. DOI=10.5120/ijca2022922082

@article{ 10.5120/ijca2022922082,
author = { Pravinkrishnan K., Prabavathy Balasundaram, Lekshmi Kalinathan },
title = { An Overview of Chatbots using ML Algorithms in Agricultural Domain },
journal = { International Journal of Computer Applications },
issue_date = { May 2022 },
volume = { 184 },
number = { 11 },
month = { May },
year = { 2022 },
issn = { 0975-8887 },
pages = { 15-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume184/number11/32368-2022922082/ },
doi = { 10.5120/ijca2022922082 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:21:11.093912+05:30
%A Pravinkrishnan K.
%A Prabavathy Balasundaram
%A Lekshmi Kalinathan
%T An Overview of Chatbots using ML Algorithms in Agricultural Domain
%J International Journal of Computer Applications
%@ 0975-8887
%V 184
%N 11
%P 15-22
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The agricultural sector plays a vital part in a country’s economic growth. It has already made a major contribution to advanced countries’ economic growth. The impact it hason less-developed countries’ economic development is vitally important. The farmers involved in agricultural activities lack the resources to stay updated with the information related to the latest advancements in technologies and farming practices. Existing human-involved operations such as Kissan Call Center (KCC), even though capable of delivering expected results, has its own drawbacks. Hence there is a need for an automated chatbot system that can function as a substitute to KCC. A chatbot system is a system that delivers domain-specific knowledge to its users. Such a system in the field of agriculture is very helpful in keeping the farmers updated. In this paper, existing works on such question-answer systems focusing entirely on works involving machine learning techniqueshave been reviewed. Suggestionsto improve the overall usability of the existing systemshave also been made.

References
  1. Jain, N., Jain, P., Kayal, P., Sahit, J., Pachpande, S., Choudhari, J.: AgriBot: agriculture-specific question answer system. IndiaRxiv (June 2019).
  2. du Preez, SJ., Lall, M., Sinha, S.: An intelligent web-based voice chat bot. In: IEEE EUROCON 2009, pp. 386-391. IEEE 18 May 2009.
  3. Vijayalakshmi, J., Pandimeena, K.: Agriculture talkbot using AI. International Journal of Recent Technology and Engineering (IJRTE), Vol. 8, pp 186-90 (Jul 2019).
  4. Gawade, H., Patil, V., Vishe, P., Kolpe, S.: College Enquiry Chat-Bot System. International Journal of Engineering Research & Technology (IJERT), Vol. 9, Issue 9 (Sept 2020).
  5. Yashaswini, D., Hemalatha, K., Nivedhitha, G.: Smart Chatbot for Agriculture. International Journal of Engineering Science and Computing (IJESC) Vol. 9, Issue 5, (2019)
  6. Jain, M., Kumar, P., Bhansali, I., Liao, QV., Truong, K., Patel, S.: FarmChat: a conversational agent to answer farmer queries. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, pp.1-22. Association for Computing Machinery, New York, NY, United States (Dec 2018).
  7. Ong, RJ., Raof, RA., Sudin, S., Choong, KY.: A Review of Chatbot development for Dy-namic Web-based Knowledge Management System (KMS) in Small Scale Agriculture. In: Journal of Physics: Conference Series, Vol. 1755, Issue 1, p. 012051. IOP Publishing (Feb 2021).
  8. Arora, B., Chaudhary, DS., Satsangi, M., Yadav, M., Singh, L., Sudhish, PS.: Agribot: a natural language generative neural networks engine for agricultural applications. In: 2020 In-ternational Conference on Contemporary Computing and Applications (IC3A), pp. 28-33. IEEE, Lucknow, India (Feb 2020).
  9. Niranjan, PY., Rajpurohit, VS., Malgi, R.: A survey on chat-bot system for agriculture do-main. In: 2019 1st International Conference on Advances in Information Technology (ICAIT), pp. 99-103. IEEE, Chikmagalur, India (Jul 2019).
  10. Sawant, D., Jaiswal, A., Singh, J., Shah, P.: AgriBot-An intelligent interactive interface to assist farmers in agricultural activities. In: 2019 IEEE Bombay Section Signature Conference (IBSSC), pp. 1-6. IEEE, Bombay, India (Jul 2019).
  11. Lalwani, T., Bhalotia, S., Pal, A., Rathod, V., Bisen, S.: Implementation of a Chatbot Sys-tem using AI and NLP. International Journal of Innovative Research in Computer Science & Technology (IJIRCST) Vol. 6, Issue 3. (May 2018).
  12. Feine, J., Morana, S., Maedche, A.: A chatbot response generation system. In: Proceedings of the Conference on Mensch und Computer, pp. 333-341. ACM, New York, United States (Sep 2020).
  13. Han, S., Shim, H., Kim, B., Park, S., Ryu, S., Lee, GG.: Keyword question answering system with report generation for linked data. In: 2015 International Conference on Big Data and Smart Computing (BIGCOMP), pp. 23-26. IEEE, Jeju, South Korea (Feb 2015).
  14. Singh, S., Thakur, HK.: Survey of Various AI Chatbots Based on Technology Used. In: 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), pp. 1074-1079. IEEE, Noida, New Delhi, India (Jun 2020).
  15. Liu, B., Xu, Z., Sun, C., Wang, B., Wang, X., Wong, DF., Zhang, M.: Content-oriented us-er modeling for personalized response ranking in chatbots. IEEE/ACM Transactions on Au-dio, Speech, and Language Processing. pp. 122-33. (Oct 2017).
  16. Jadhav, M., Kolambe, N., Jain, S., Chaudhari, S.: Farming Made Easy using Machine Learning. In: 2021 2nd International Conference for Emerging Technology (INCET), pp. 1-5. IEEE, Belgaum, India (May 2021).
  17. Wang, R., Ning, C., Lu, B., Huang, X.: Research on answer generation method based on focus information extraction. In: 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), Vol. 2, pp. 724-728. IEEE, Zhangjiajie, China (May 2012).
  18. Wang, Y., Sun, Y., Chen, Y.: Design and Research of Intelligent Tutor System Based on Natural Language Processing. In: 2019 IEEE International Conference on Computer Science and Educational Informatization (CSEI), pp. 33-36. IEEE, Kunming, China (Aug 2019).
  19. Vijayabaskar, PS., Sreemathi, R., Keertanaa, E.: Crop prediction using predictive analytics. In: 2017 International Conference on Computation of Power, Energy Information and Communication (ICCPEIC), pp. 370-373. IEEE, Tamil Nadu, India (Mar 2017).
  20. Yamada, T., Arakawa, T.: A study on output sentence generation method for question answering using statistical machine translation. In: 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), pp. 1199-1202. IEEE, Gwangju, South Korea (Oct 2013).
  21. Alves, BC., de Freitas, LA., de Aguiar, MS.: Chatbot as support to decision-making in the context of natural resource management. In: Anais do XII Workshop de Com-putaçãoAplicada à Gestão do MeioAmbiente e RecursosNaturais, pp. 29-38. SBC, Brazil, South America (Jul 2021).
  22. Patel, D., Suryakantbhai, N.: AGRICULTURE WITH MACHINE LEARNING. European Journal of Molecular & Clinical Medicine. Vol. 7, Issue 8, pp. 5491-5493 (Feb 2021).
  23. Mostaco, GM., De Souza, IR., Campos, LB., Cugnasca, CE.: AgronomoBot: a smart answering Chatbot applied to agricultural sensor networks. In: 14th international conference on precision agriculture, Vol. 24, pp. 1-13. Montreal, Quebec, Canada (Jun 2018).
  24. Fernandes, S., Gawas, R., Alvares, P., Femandes, M., Kale, D., Aswale, S.: Survey on var-ious conversational systems. In: 2020 International Conference on Emerging Trends in In-formation Technology and Engineering (ic-ETITE), pp. 1-8.IEEE, Vellore, Tamil Nadu, In-dia(Feb 2020).
  25. Chen, AP., Chansilp, K., Kerdprasop, K., Chuaybamroong, P., Kerdprasop, N., Shun-Fa, H., Yi-In, L., Ching-Tzu, H., Chih-Hua, C., Chen, ST., Zhang, RC.: B2B Marketing Crafts Intelligence Commerce: How a Chatbot Is Designed for the Taiwan Agriculture Service. In-ternational Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 10, Is-sue 2, pp. 114-24 (2020).
  26. Nayak, V., Sowmya, NH.: Agroxpert-Farmer assistant. Global Transitions Proceedings, Vol. 2, Issue 2, pp. 506-12 (Nov 2021).
  27. Kale, SS., Patil, PS.: A Machine Learning Approach to Predict Crop Yield and Success Rate. In: 2019 IEEE Pune Section International Conference (PuneCon), pp. 1-5. IEEE, Pu-ne, India (Dec 2019).
  28. Kavita, M., Mathur, P.: Crop Yield Estimation in India Using Machine Learning. In: 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), pp. 220-224. IEEE, Noida, New Delhi, India (Oct 2020).
  29. Manjula, A., Narsimha, G.: XCYPF: A flexible and extensible framework for agricultural Crop Yield Prediction. In: 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO), pp. 1-5. IEEE, Coimbatore, Tamil Nadu, India (Jan 2015).
  30. Momaya, M., Khanna, A., Sadavarte, J., Sankhe, M.: Krushi–The Farmer Chatbot. In: 2021 International Conference on Communication information and Computing Technology (ICCICT), pp. 1-6. IEEE, Mumbai, India (Jun 2021).
  31. Medar, R., Rajpurohit, VS., Shweta, S.: Crop yield prediction using machine learning techniques. In: 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), pp. 1-5. IEEE, Mumbai, India (Mar 2019).
  32. Gounder, S., Patil, M., Rokade, V., More, N.: Agrobot: An Agricultural Advancement to Enable Smart Farm Services Using NLP. Journal of Emerging Technologies and Innovative Research (2021).
  33. Palasundram, K., Sharef, NM., Kasmiran, KA., Azman, A.: Enhancements to the Sequence-to-Sequence-Based Natural Answer Generation Models. IEEE Access. pp. 45738- 45752 (Mar 2020).
  34. Mishra, S., Mishra, D., Santra, GH.: Applications of machine learning techniques in agricultural crop production: a review paper. Indian Journal of Science and Technology, Vol. 9, Is-sue 38, pp. 1-4 (Oct 2016).
  35. Sun, L., Zhu, Z.: A RS/GIS-Based System for Monitoring Crop Yield. In: 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, pp. 17-20. IEEE, Changsha, China (Feb 2011).
Index Terms

Computer Science
Information Sciences

Keywords

Chatbot Query processing Intent identification Similarity function Answer extraction.