CFP last date
20 December 2024
Reseach Article

Detection of COVID-19 Cases using Histogram of Oriented Gradient (HOG) with Support Vector Machine (SVM) Classifier

by Reda Elbarougy, G.M. Behery, Y.M. Younes, Esmail Aboghrara
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 183 - Number 52
Year of Publication: 2022
Authors: Reda Elbarougy, G.M. Behery, Y.M. Younes, Esmail Aboghrara
10.5120/ijca2022921943

Reda Elbarougy, G.M. Behery, Y.M. Younes, Esmail Aboghrara . Detection of COVID-19 Cases using Histogram of Oriented Gradient (HOG) with Support Vector Machine (SVM) Classifier. International Journal of Computer Applications. 183, 52 ( Feb 2022), 40-44. DOI=10.5120/ijca2022921943

@article{ 10.5120/ijca2022921943,
author = { Reda Elbarougy, G.M. Behery, Y.M. Younes, Esmail Aboghrara },
title = { Detection of COVID-19 Cases using Histogram of Oriented Gradient (HOG) with Support Vector Machine (SVM) Classifier },
journal = { International Journal of Computer Applications },
issue_date = { Feb 2022 },
volume = { 183 },
number = { 52 },
month = { Feb },
year = { 2022 },
issn = { 0975-8887 },
pages = { 40-44 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume183/number52/32285-2022921943/ },
doi = { 10.5120/ijca2022921943 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:19:46.395028+05:30
%A Reda Elbarougy
%A G.M. Behery
%A Y.M. Younes
%A Esmail Aboghrara
%T Detection of COVID-19 Cases using Histogram of Oriented Gradient (HOG) with Support Vector Machine (SVM) Classifier
%J International Journal of Computer Applications
%@ 0975-8887
%V 183
%N 52
%P 40-44
%D 2022
%I Foundation of Computer Science (FCS), NY, USA
Abstract

COVID-19 is now considered the most severe and fatal human illness caused by a novel coronavirus.The coronavirus which is considered to have originated in Wuhan, China spread fast around the world in December 2019 and caused a huge the number of fatalities. The early discovery of COVID-19 out of precise analysis, specifically in circumstances where there are no immediately visible symptoms,could lower the patient's risk of death. The demand for supplemental diagnostic equipment has grown because there are no precise and available toolkits for automation. However, recent studies using radiological imaging techniques have revealed important information for detecting the COVID-19.Combining artificial intelligence and radiological imaging techniques can help improve disease recognition accuracy. A machine learning (ML) strategy for recognizing COVID-19 in chest x-ray images is proposed in this paper.Features were extracted using the histogram-oriented gradient (HOG) from x-ray images. The classification performance of the support vector machine (SVM) classifier used in this study was excellent. The proposed HOG feature technique provided high accuracy reach (96.6%).

References
  1. Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., ... &Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British journal of sports medicine, 54(24), 1451-1462.‏
  2. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., ... & Tian, J. H. (2020). Pei 465 YY et al: A new coronavirus associated with human respiratory disease in 466. China. Nature, 579(7798), 265-269.‏
  3. Yang, X., Yu, Y., Xu, J., Shu, H., Liu, H., Wu, Y., ... & Shang, Y. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine, 8(5), 475-481.‏
  4. Wu, Z., & McGoogan, J. M. (2020). Outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA, 323(10.10), 1001.‏
  5. Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., ... & Pillai, S. K. (2020). First case of 2019 novel coronavirus in the United States. New England Journal of Medicine.‏
  6. Kong, W., & Agarwal, P. P. (2020). Chest imaging appearance of COVID-19 infection. Radiol Cardiothoracic Imaging 2 (1): e200028.
  7. Hu, Z., Ge, Q., Li, S., Jin, L., &Xiong, M. (2020). Artificial intelligence forecasting of covid-19 in china. arXiv preprint arXiv:2002.07112.‏
  8. Zu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology, 296(2), E15-E25.‏
  9. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and vascular neurology, 2(4).‏
  10. Deo, R. C. (2015). Machine learning in medicine. Circulation, 132(20), 1920-1930.‏
  11. Sarker, I. H., Kayes, A. S. M., & Watters, P. (2019). Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. Journal of Big Data, 6(1), 1-28.‏
  12. Mahdy, L. N., Ezzat, K. A., Elmousalami, H. H., Ella, H. A., &Hassanien, A. E. (2020). Automatic x-ray covid-19 lung image classification system based on multi-level thresholding and support vector machine. Med Rxiv.‏
  13. Vickers, N. J. (2017). Animal communication: when i’m calling you, will you answer too? Current biology, 27(14), R713-R715.‏
  14. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88.‏
  15. Altaf, F., Islam, S. M., Akhtar, N., & Janjua, N. K. (2019). Going deep in medical image analysis: concepts, methods, challenges, and future directions. IEEE Access, 7, 99540-99572.
  16. Xing, F., Xie, Y., Su, H., Liu, F., & Yang, L. (2017). Deep learning in microscopy image analysis: A survey. IEEE transactions on neural networks and learning systems, 29(10), 4550-4568.‏‏
  17. Muhammad, K., Khan, S., Del Ser, J., & de Albuquerque, V. H. C. (2020). Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 507-522.‏
  18. Liu, J., Pan, Y., Li, M., Chen, Z., Tang, L., Lu, C., & Wang, J. (2018). Applications of deep learning to MRI images: a survey. Big Data Min Anal 1 (1): 1–18.
  19. Seeböck, P., Orlando, J. I., Schlegl, T., Waldstein, S. M., Bogunović, H., Klimscha, S., ... & Schmidt-Erfurth, U. (2019). Exploiting epistemic uncertainty of anatomy segmentation for anomaly detection in retinal OCT. IEEE transactions on medical imaging, 39(1), 87-98.‏
  20. Cohen, J. P., Morrison, P., Dao, L., Roth, K., Duong, T. Q., &Ghassemi, M. (2020). Covid-19 image data collection: Prospective predictions are the future. arXiv preprint arXiv:2006.11988.
  21. Dalal, N., &Triggs, B. (2005, June). Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05) (Vol. 1, pp. 886-893). Ieee.
Index Terms

Computer Science
Information Sciences

Keywords

Coronavirus Histogram-oriented gradient COVID-19 Chest x-ray Machine learning Radiology images