CFP last date
20 January 2025
Reseach Article

Modified Ratio Estimator in Simple Random Sampling using Auxiliary Information

by Sumaira Ajmal Khan, Hafsa Abbas, Mehran Faiz, Lubna Shaheen
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 183 - Number 35
Year of Publication: 2021
Authors: Sumaira Ajmal Khan, Hafsa Abbas, Mehran Faiz, Lubna Shaheen
10.5120/ijca2021921711

Sumaira Ajmal Khan, Hafsa Abbas, Mehran Faiz, Lubna Shaheen . Modified Ratio Estimator in Simple Random Sampling using Auxiliary Information. International Journal of Computer Applications. 183, 35 ( Nov 2021), 10-13. DOI=10.5120/ijca2021921711

@article{ 10.5120/ijca2021921711,
author = { Sumaira Ajmal Khan, Hafsa Abbas, Mehran Faiz, Lubna Shaheen },
title = { Modified Ratio Estimator in Simple Random Sampling using Auxiliary Information },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2021 },
volume = { 183 },
number = { 35 },
month = { Nov },
year = { 2021 },
issn = { 0975-8887 },
pages = { 10-13 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume183/number35/32154-2021921711/ },
doi = { 10.5120/ijca2021921711 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:18:43.751090+05:30
%A Sumaira Ajmal Khan
%A Hafsa Abbas
%A Mehran Faiz
%A Lubna Shaheen
%T Modified Ratio Estimator in Simple Random Sampling using Auxiliary Information
%J International Journal of Computer Applications
%@ 0975-8887
%V 183
%N 35
%P 10-13
%D 2021
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this study, we offer a new estimator for population variance in simple random sampling based on auxiliary information. We calculated the proposed estimator's bias and MSE equations and compared them to the bias and MSE of existing estimators, demonstrating that the new estimator is more efficient than the existing estimators proposed by different authors. With the aid of numerical example, we can support this theoretical result.

References
  1. Isaki, C. T. (1983). Variance estimation using auxiliary information. Journal of the American Statistical Association, 78(381), 117-123.
  2. Kadilar, C., & Cingi, H. (2005). A new ratio estimator in stratified random sampling. Communications in Statistics—Theory and Methods, 34(3), 597-602.
  3. Das, A. K. (1978). Use of auxiliary information in estimating the finite population variance. Sankhya, c, 40, 139-148.
  4. Cebrián, A. A., & García, M. R. (1997). Variance estimation using auxiliary information: An almost unbiased multivariate ratio estimator. Metrika, 45(1), 171-178.
  5. Ahmed, M. S., Raman, M. S., & Hossain, M. I. (2000). Some competitive estimators of finite population variance using multivariate auxiliary information. International journal of information and management sciences, 11(1), 49-54.
  6. Kadilar, C., & Cingi, H. (2006a). Improvement in variance estimation using auxiliary information. Hacettepe Journal of mathematics and Statistics, 35(1), 111-115.
  7. Kadilar, C., & Cingi, H. (2006b). Ratio estimators for the population variance in simple and stratified random sampling. Applied Mathematics and Computation, 173(2), 1047-1059.
  8. Gupta, S., & Shabbir, J. (2008). Variance estimation in simple random sampling using auxiliary information. Hacettepe Journal of mathematics and Statistics, 37(1), 57-67.
  9. Subramani, J., & Kumarapandiyan, G. (2012a). Estimation of population mean using co-efficient of variation and median of an auxiliary variable. International Journal of Probability and Statistics, 1(4), 111-118.
  10. Subramani, J., & Kumarapandiyan, G. (2012b). Variance Estimation Using Median of the Auxiliary Variable. International Journal of Probability and Statistics, 1(3), 36–40.
  11. Subramani, J., & Kumarapandiyan, G. (2013). Estimation of variance using known coefficient of variation and median of an auxiliary variable. Journal of Modern Applied Statistical Methods, 12(1), 11.
Index Terms

Computer Science
Information Sciences

Keywords

Variance estimator bias MSE simple random sampling auxiliary information efficiency