We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Implementation of K-Modes Clustering in Determining Traffic Accident Patterns

by Septyan Eka Prastya, Muhammad Zulfadhilah, Nurhaeni
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 183 - Number 30
Year of Publication: 2021
Authors: Septyan Eka Prastya, Muhammad Zulfadhilah, Nurhaeni
10.5120/ijca2021921689

Septyan Eka Prastya, Muhammad Zulfadhilah, Nurhaeni . Implementation of K-Modes Clustering in Determining Traffic Accident Patterns. International Journal of Computer Applications. 183, 30 ( Oct 2021), 32-37. DOI=10.5120/ijca2021921689

@article{ 10.5120/ijca2021921689,
author = { Septyan Eka Prastya, Muhammad Zulfadhilah, Nurhaeni },
title = { Implementation of K-Modes Clustering in Determining Traffic Accident Patterns },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2021 },
volume = { 183 },
number = { 30 },
month = { Oct },
year = { 2021 },
issn = { 0975-8887 },
pages = { 32-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume183/number30/32122-2021921689/ },
doi = { 10.5120/ijca2021921689 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:18:19.957555+05:30
%A Septyan Eka Prastya
%A Muhammad Zulfadhilah
%A Nurhaeni
%T Implementation of K-Modes Clustering in Determining Traffic Accident Patterns
%J International Journal of Computer Applications
%@ 0975-8887
%V 183
%N 30
%P 32-37
%D 2021
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The increasing number of traffic accidents in South Kalimantan continues to occur, which needs to be considered by all parties, especially the traffic police. One of the efforts to reduce it is by finding the pattern of traffic accidents through the clustering method. Data from police reports will determine the grouping of traffic accidents based on day, time, victim, type of accident, geometry, age of the perpetrator, age of the victim, weather, Profession of the perpetrator, Profession of the victim, and type of vehicle involved which are some of the factors causing traffic accidents. This study aims to find the pattern of traffic accidents that often occur using the k-modes algorithm and to find the optimal k value; this study uses the Cohesion and Separation algorithm. The application of clustering using the k-modes algorithm will produce a traffic accident pattern based on the optimal k. The results of this study by testing the K-Modes algorithm at K=2, K=3, K=4, K=5, K=6, K=7, K=8, K=9, and K=10 with each experiment. -each k 5 times produces the optimal k value, which is located at K=3 in the 1st Cohesion experiment with a value of 2641. The pattern generated from the K-Modes algorithm has 3 patterns obtained from each cluster for K=3. At the final stage of determining the pattern of traffic accidents, it is known that the first cluster is the cluster with the largest size (61), namely when the weather is sunny, there are double accidents on the road with straight geometric shapes involving motorbikes and motorbikes.

References
  1. B. P. S. Indonesia, “Statistik Transportasi Darat 2015,” 2015.
  2. D. T. Nugrahadi and F. I. S. Rahayu, “Clustering Penentuan Potensi Kejahatan Daerah Di Kota Banjarbaru Dengan Metode K-Means,” Kumpul. J. Ilmu Komput., vol. 1, no. 1, pp. 33–45, 2014.
  3. A. RI, “Undang-Undang Republik Indonesia Nomor 22 Tahun 2009 Tentang Lalu Lintas dan Angkutan Umum,” 2009.
  4. P. C.E, “Analisis Karakteristik Kecelakaan dan Faktor Penyebab Kecelakaan Pada Lokasi Blackspot di Kota Kayu Agung,” Tek. Sipil dan Lingkung., vol. 2, no. 1, pp. 154–161, 2014.
  5. Fadlina, “Data Mining Untuk Analisa Tingkat Kejahatan Jalanan,” Inf. dan Teknol. Ilm., vol. 3, no. 1, pp. 144–154, 2014.
  6. Hexagraha A., “Data Mining Kredit Usaha Mikro di Bank XXXX,” in Konferensi Nasional Sistem Informasi 2014, STMIK Dipanegara Makassar, 2014, vol. 1, pp. 1–5.
  7. D. T. Larose and C. D. Larose, Discovering Knowledge in Data: An Introduction to Data Mining: Second Edition. 2014.
  8. P. . Simbolon, “Implementasi Data Mining Pada Sistem Persediaan Barang Menggunakan Algoritma Apriori ( Studi Kasus : Srikandi Cash Credit Elektronic dan Furniture ),” J. Ris. Komput., vol. 6, no. 4, pp. 401–406, 2019.
  9. A. . Prakash, “Review on K-Mode Clustering,” Int. J. Eng. Comput. Sci., vol. 5, no. 11, 2016.
  10. E. K. Nduru, E. Buulolo, and P. Pristiwanto, “IMPLEMENTASI ALGORITMA K-Modes UNTUK MENENTUKAN STRATEGI MARKETING STMIK BUDI DARMA,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 12–19, 2018, doi: 10.30865/komik.v2i1.903.
Index Terms

Computer Science
Information Sciences

Keywords

Clustering Cohesion and Separation K-Modes Traffic Accident Patterns