CFP last date
20 December 2024
Reseach Article

Thermal Image Thresholding for Automatic Detection of Bovine Mastitis

by Rodes Angelo B. Da Silva, João Paulo Silva Do Monte Lima, Héliton Pandorfi, Gledson Luiz P. De Almeida
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 183 - Number 14
Year of Publication: 2021
Authors: Rodes Angelo B. Da Silva, João Paulo Silva Do Monte Lima, Héliton Pandorfi, Gledson Luiz P. De Almeida
10.5120/ijca2021921460

Rodes Angelo B. Da Silva, João Paulo Silva Do Monte Lima, Héliton Pandorfi, Gledson Luiz P. De Almeida . Thermal Image Thresholding for Automatic Detection of Bovine Mastitis. International Journal of Computer Applications. 183, 14 ( Jul 2021), 29-33. DOI=10.5120/ijca2021921460

@article{ 10.5120/ijca2021921460,
author = { Rodes Angelo B. Da Silva, João Paulo Silva Do Monte Lima, Héliton Pandorfi, Gledson Luiz P. De Almeida },
title = { Thermal Image Thresholding for Automatic Detection of Bovine Mastitis },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2021 },
volume = { 183 },
number = { 14 },
month = { Jul },
year = { 2021 },
issn = { 0975-8887 },
pages = { 29-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume183/number14/31996-2021921460/ },
doi = { 10.5120/ijca2021921460 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:19:55.418519+05:30
%A Rodes Angelo B. Da Silva
%A João Paulo Silva Do Monte Lima
%A Héliton Pandorfi
%A Gledson Luiz P. De Almeida
%T Thermal Image Thresholding for Automatic Detection of Bovine Mastitis
%J International Journal of Computer Applications
%@ 0975-8887
%V 183
%N 14
%P 29-33
%D 2021
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Disruptive technologies are of great relevance for the advancement of animal science. Dairy cattle farming is of uttermost importance in the global scenario, but hindrances such as mastitis have been causing losses in the sector. This study aimed to develop and validate an algorithm for threshold-based segmentation of thermal images and automatic classification of clinical cases of bovine mastitis. The research was conducted at two milk production units located in the municipalities of Capoeiras and Pesqueira, Pernambuco, Brazil. The number of samples was determined according to the selection criteria and totaled 120 animals (40 healthy animals, 40 animals with subclinical mastitis, and 40 with clinical mastitis). Thermal images of the animals' udder were made with an infrared thermographic camera; the shots were taken from the front left, front right, rear and lower mammary quarters, with four images per animal, totaling 960 thermal images for analysis of said quarters. For automatic segmentation of images, an algorithm in C++ language was developed using the OpenCV library to identify the temperature referring to each pixel on the image through interpolation by the technique of pixel thresholding and quantification in the analyzed interval (t to tmax) of each image . Healthy animals presented 11,034 to 21,521 pixels. Animals with subclinical mastitis presented 12,582 to 40,032 pixels. In those with clinical mastitis, pixels ranged from 45.223 to 49.451. The algorithm for automatic segmentation allowed distinguishing the images of healthy animals from those of animals with subclinical and clinical mastitis. The routine implemented for determining the temperature of each pixel on the image was coherent, derived from results obtained through Flir Tools software.

References
  1. Baffa, M.F.O., Cheloni, D.J.M., Lattari, L.G.and Coelho, M.A.N.(2016). Segmentação Automática de Mamas em Imagens infravermelhas utilizando limiarização com refinamento adaptativo em bases multivariadas. Revista de Informática Aplicada, 12(2)
  2. Bortolami, A., Fiore, E; Gianesella, M., Corro, M., Catania, S. And Morgante, M. (2015). Evaluation of the udder health status in subclinical mastitis affected dairy cows through bacteriological culture, somatic cell count and thermo graphic imaging. Polish Journal of Veterinary Sciences, 18(4), 799-805.
  3. Chacur, M.G.M,, Souza, C.D., Andrade, I. B., Bastos, G.P., Deak. F.L.G., Souza, M.G.R., Cornacini, G.F., Marques Júnior, A.P. (2016). Aplicações da termografia por infravermelho na reprodução animal e bem-estar em animais domésticos e silvestres. Revista Brasileira de Reprodução Animal, Belo Horizonte, 40(3), 88-94.
  4. Colak, A., Polat, B., Okumus, Z., Kaya M., Yanmaz, L.E., Hayirli, A. (2008). Short communication: early detection of mastitis using infrared thermography in dairy cows. Journa of Dairy Science, 91(11), 4244–4248.
  5. Digiovani, D. B., Borges, M.H.F., Galdioli, V.H.G., Matias, B.F., Bernardo, G.M., Silva, T.R.; Fávaro, P.C.; Júnior, F.A.B., Lopes, F.G.; Júnior, C.K. and Ribeiro, E.L.A. (2016) Infrared thermography as diagnostic tool for bovine subclinical mastitis detection. Revista Brasileira de Higiene e Sanidade Animal., 10(4): 685-692.
  6. Duarte, A., Carrão, L., Espanha, M.,Viana, T., Freitas, D., Bártolo, P., Faria, P., (2014). Tecnologia. 16, 1560-1569.
  7. García, G. B. et al. Learning Image Processing with OpenCV. [S.l.]: Packt Publishing Ltd, 2015
  8. Gloster,J.,Ebert,K., Gubbins, S.,Bashiruddin, J. andPaton, D.J. (2011) Normal variation in thermal radiatedtemperatureincattle:implicationsforfoot-and-mouthdisease detection. BMC Veterinary Research, 7, 1746-6148.
  9. Gonzalez, Rafael C., Woods, Richard E. Processamento de Imagens Digitais. Edgard Blücher Ltda, 2000.
  10. Hoffmann, G., Schimdt, M., Ammon, C., Rose-Meierhofer, S., Burfeind, O., Heuwiese, W., Berg, W. (2013). Monitoring the body temperature of cows and calves using vídeo recordings from an infrared thermography camera.. Veterinary Research Communications, 37(2) 91–99.
  11. Hovinen, M., Siivonen, J., Taponen, S., Hanninen, L., Pastell, M., Aisla, A.M., Pyorala, S. (2008). Detection of clinical mastitis with the help of a thermal camera. Journal of Dairy Science , 9(12), 4592–4598.
  12. Langoni, H., Salina, A., Oliveira, G.C., Junqueira, N.B.,Menozzi, B.D. and Joaquim, S.F. (2017). Consideraçõessobreotratamentodasmastites.PesquisaVeterináriaBrasileira,37(11),1261-1269.
  13. Melo,G.J.A.,Neto,B.A.M.,Gomes,V.,Almeida, L.A.L. and Lima, A.C.C. (2014). Método de limiarização automática para a contagem de células somáticas em imagens microscópicas. Revista GEINTEC.4(3),1283 -1291.
  14. Montanholi, Y.R., Odongo, N.E., Swanson, K.C., Schenkel, F.S., Mcbride, B.W., Miller, S.P., Application of infrared thermography as an indicator of heat and methane production and its use in the study of skin temperature in response to physiological events in dairy cattle (Bos taurus). (2008) Journal of Thermal Biology, 33(8).468–475.
  15. Polat, B., Colak, A., Cengiz, M., Yanmaz, L.E., Oral, H., Bastan, A., Kaya, S.; Hayrirli, A. (2010). Sensitivity and specificity of infrared thermography in detection of subclinical mastitis in dairy cows. Journal Dairy Science. Source: Journal of dairy science. 93(8), 3525-3532.
  16. Rainwater-Lovett, K., Pacheco, J.M., Packer, C., Rodriguez, L.L. (2009). Detection of foot-and-mouth disease virus infected cattle using infrared thermography. The Veterinary Journal , 180(3), 317–324.
  17. Resmini, R., Conci, A., Borchartt, T.B., De Lima, R.C.F., Montenegro, A.A., Pantaleão, C.A.(2012). Diagnóstico precoce de doenças mamárias usando imagens térmicas e aprendizado de máquina. Revista eletrônica do Vale do Itajaí, 1(1), 55-67.
  18. Redaelli, V., Bergero, D., Zucca, A, E., Ferrucci, F., Nanni, L., Crosta, L., Luzzi, F. (2013). Use of Thermography Techniques in Equines: Principles and Applications. Journal of Equine Veterinary Science, 1(6).
  19. Sá, J.P.N., Figueiredo, C.H.A., Neto, O.L.S., Roberto,S.B.A.,Gadelha,H.S.andAlencar,M.C.B..(2018).Revista Brasileira deGestão Ambiental,12(1),01-13,2018.
  20. Shaikh, S., Manza, R., Hanumant, G., Kale, K. (2016). Segmentation of Thermal Images Using Thresholding-Based Methods for Detection of Malignant Tumours, International Journal of Intelligent Systems Tecnologies and Applications,330, 131-146.
  21. Schaeffer, A.L., Cook, N., Tessaro, S.V., Deregt, D., Desroches, G., Dubeski, P.L., Tong, A.K.W., Godson, D.L. (2004). Early detection and prediction of infection using infrared thermography. Can. J. Anim. Sci. 84 (1), 73–80.
  22. Vianello, R. L. And Alves, A. R. (1991). Meteorologia basic aeaplicações. Viçosa:UFV–Imprensa Universitária. 449p.
  23. Warrick,A.W.and Nielsen, D.R.(1998).Spatial variability of soil physic properties in the field. NewYork:Academic, 655-675.
Index Terms

Computer Science
Information Sciences

Keywords

Image analysis dairy cattle breeding thermal imaging