CFP last date
20 January 2025
Reseach Article

Higher Order Moments, Spectral and Bispectral Density Functions for INAR(1)

by M. M. Gabr, B. S. El-Desouky, F. A. Shiha, Shimaa M. El-Hadidy
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 182 - Number 9
Year of Publication: 2018
Authors: M. M. Gabr, B. S. El-Desouky, F. A. Shiha, Shimaa M. El-Hadidy
10.5120/ijca2018917686

M. M. Gabr, B. S. El-Desouky, F. A. Shiha, Shimaa M. El-Hadidy . Higher Order Moments, Spectral and Bispectral Density Functions for INAR(1). International Journal of Computer Applications. 182, 9 ( Aug 2018), 1-12. DOI=10.5120/ijca2018917686

@article{ 10.5120/ijca2018917686,
author = { M. M. Gabr, B. S. El-Desouky, F. A. Shiha, Shimaa M. El-Hadidy },
title = { Higher Order Moments, Spectral and Bispectral Density Functions for INAR(1) },
journal = { International Journal of Computer Applications },
issue_date = { Aug 2018 },
volume = { 182 },
number = { 9 },
month = { Aug },
year = { 2018 },
issn = { 0975-8887 },
pages = { 1-12 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume182/number9/29845-2018917686/ },
doi = { 10.5120/ijca2018917686 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:15:00.132814+05:30
%A M. M. Gabr
%A B. S. El-Desouky
%A F. A. Shiha
%A Shimaa M. El-Hadidy
%T Higher Order Moments, Spectral and Bispectral Density Functions for INAR(1)
%J International Journal of Computer Applications
%@ 0975-8887
%V 182
%N 9
%P 1-12
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, some higher order moments, spectral and bispectral density functions for some integer autoregressive of order one (INAR(1)) models are calculated. These models are the new skew INAR(1) (NSINAR(1)), the shifted geometric INAR(1) type- II (SGINAR(1)-II) and the dependent counting geometric INAR(1) (DCGINAR(1)). The spectrum, bispectrum and normalized bispectrum are estimated using the one and two dimensional lag windows as in Subba Rao and Gabr(1984). A realization is generated for each model of size n=500 for estimation. Also, the bispectral density function and normalized bispectral density function are used for studying the linearity of integer valued time series models.

References
  1. Al-Osh, M. A. and Alzaid, A. A. (1987). First-order integervalued autoregressive (INAR(1)) process. J. Time Ser. Anal. 8, 261–275.
  2. Al-Zaid, A. A. and Al-Osh, M. A. (1988) First-order integervalued autoregressive (INAR(1)) process. Distributional and Regression Properties. Statistica Neerlandica. 42, 53–61.
  3. Bakouch, H. S. (2010). Higher-order moments, cumulants and spectral densities of the NGINAR(1) process. Statistical Methodology. 7, 20, 1- 21.
  4. Bakouch, H. S. and Risti´c, M. M. (2010). Zero Truncated Poisson Integer Valued AR(1) Model. Metrika 72(2), 265-280.
  5. Bourguignon, M. and Vasconcellos, K. L. P. (2016). A new skew integerb valued time series process. Statistical Methodology 31,8-19.
  6. Hinich, M. (1982). Testing for Gaussianity and Linearity of a stationary time series. J. Time Ser. Anal, No.3, 169-176.
  7. Leonov, V. P. and Shiryaev, A. N. (1959). On a method of calculation of semi-invariants. Theor. Prob. Appl. (URSS) 4,319– 29.
  8. McKenzie, E. (1985). Some simple models for discrete variate time series. J. AmWater Resour Assoc. 21, 645–650.
  9. Nasti´c, A. S. (2012). On Shifted Geometric INAR(1) Models Based on Geometric Counting Series. Commun. Statist. Theory Meth. 41, 4285–430.
  10. Parzen, E. (1961b). Mathematical considerations in the estimation of spectra, Technometrics, 3, 167-190.
  11. Risti´c, M. M, Bakouch, H. S., Nasti`c, A. S. (2009). A New geometric first-order integer-valued autoregressive (NGINAR(1)) process. J. Statist. Plann. Inference.139, 2218-2226.
  12. Risti´c, M. M, Nasti`c, A. S., Mileti`c Ili`c, A. V. (2013). Ageometric time series model with dependent Bernoulli counting series. J. Time Ser. Anal. 34, 466-476.
  13. Silva, M. E. and Oliveira, V. L. (2004). Difference equations for the higher order moments and cumulants of the INAR(1) model. J. Time Ser. Anal. 25, 317-333.
  14. Silva, I. and Silva, M. E. (2006). Asymptotic distribution of the Yule–Walker estimator for INAR(p) processes. Statist. Prob. Lett. 76. 1655–1663.
  15. Subba Rao, T. and Gabr, M. M. (1980). A test for linearity of stationary time series. J. Tiime Series Analysis, 1, 2, 145-158.
  16. Subba Rao, T. and Gabr, M. M. (1984). An Introduction to Bispectral Analysis and Bilinear Time Series Models. Lecture Notes in Statistics, Vol. 24. Springer-Verlag, New York.
  17. Steutel, F.W. and Van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Ann. Probab. 7. 893–899.
  18. Wei , C. H. (2008). Thinning operations for modelling time series of counts—A survey. Adv. Stat. Anal. 92. 319–341.
Index Terms

Computer Science
Information Sciences

Keywords

INAR(1) NSINAR(1) SGINAR(1)-II DCGINAR(1) Moments Cumulants Spectrum Bispectrum Normalized bispectrum Parzen lag window 2-dimensional Subba Rao and Gabr lag window