CFP last date
20 January 2025
Reseach Article

Necessity of Bio-imaging Hybrid Approaches Accelerating Drug Discovery Process (Mini-Review)

by Iliyana Samardzhieva, Aamir Khan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 182 - Number 6
Year of Publication: 2018
Authors: Iliyana Samardzhieva, Aamir Khan
10.5120/ijca2018917564

Iliyana Samardzhieva, Aamir Khan . Necessity of Bio-imaging Hybrid Approaches Accelerating Drug Discovery Process (Mini-Review). International Journal of Computer Applications. 182, 6 ( Jul 2018), 1-10. DOI=10.5120/ijca2018917564

@article{ 10.5120/ijca2018917564,
author = { Iliyana Samardzhieva, Aamir Khan },
title = { Necessity of Bio-imaging Hybrid Approaches Accelerating Drug Discovery Process (Mini-Review) },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2018 },
volume = { 182 },
number = { 6 },
month = { Jul },
year = { 2018 },
issn = { 0975-8887 },
pages = { 1-10 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume182/number6/29763-2018917564/ },
doi = { 10.5120/ijca2018917564 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:10:32.082222+05:30
%A Iliyana Samardzhieva
%A Aamir Khan
%T Necessity of Bio-imaging Hybrid Approaches Accelerating Drug Discovery Process (Mini-Review)
%J International Journal of Computer Applications
%@ 0975-8887
%V 182
%N 6
%P 1-10
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Imaging technologies have made a significant improvement in the past few decades and their application made a great impact on accelerating the process of drug discovery and development. The ability to non-invasively image an animal model or co-cultured live cells and validate potential drug target, biomarkers of drug efficacy and assess a pharmacological drug interaction significantly contributes to the process of translating molecules into medicines. This paper summarizes current trends in bio-imaging technologies and their application on the process of drug discovery. In particular, High Content Screening (HCS) and Virtual Screening (VS) are reviewed, and their respective examples are discussed to gain insight into state-of-the-art bio-imaging methodologies used for extracting knowledge and its application to drug discovery. This paper argues the need to reduce the gap between experimental (e.g. HCS based assays) and theoretical (e.g. VS based assays) assays. Although HCS and VS are leading drug discovery choices for the pharmaceutical industry and such investigations have been carried out in their respective campaign, the potential effects of these approaches together to facilitate the process of drug discovery has rarely been reported. Further, the prevalent research trends on developing hybrid approaches such as VS complementing HCS implies substantial enhancement to the goal of reliable drug candidate identification.

References
  1. GOLD, webaccess = https://www.ccdc.cam.ac.uk/ solutions/csd-discovery/components/gold/, note = Accessed: 2018-04-08.
  2. vROCS Version 3.0.0, webaccess = https://www. eyesopen.com/rocs, note = Accessed: 2018-04-08.
  3. Why and how have drug discovery strategies in pharma changed? what are the new mindsets? Drug Discovery Today, 21(2):239 - 249, 2016.
  4. Caterina Bissantz, Gerd Folkers, and Didier Rognan. Protein-based virtual screening of chemical databases. 1. evaluation of different docking/scoring combinations. Journal of Medicinal Chemistry, 43(25):4759–4767, 2000. PMID: 11123984.
  5. Emilio Bombardieri. The added value of metabolic imaging with fdg-pet in oesophageal cancer: prognostic role and prediction of response to treatment. European Journal of Nuclear Medicine and Molecular Imaging, 33(7):753–758, Jul 2006.
  6. Kiran Boppana, P.K. Dubey, Sarma A.R.P. Jagarlapudi, S. Vadivelan, and G. Rambabu. Knowledge based identification of mao-b selective inhibitors using pharmacophore and structure based virtual screening models. European Journal of Medicinal Chemistry, 44(9):3584 – 3590, 2009.
  7. Istvan Borza, Sandor Kolok, Aniko Gere, Eva Agai-Csongor, Bela Agai, Gabor Tarkanyi, Csilla Horvath, Gizella Barta-Szalai, Eva Bozo, Csilla Kiss, Attila Bielik, Jozsef Nagy, Sandor Farkas, and Gyorgy Domany. Indole-2-carboxamides as novel nr2b selective nmda receptor antagonists. Bio-organic and Medicinal Chemistry Letters, 13(21):3859 – 3861, 2003.
  8. Vikas Chandra, Pengxiang Huang, Yoshitomo Hamuro, Srilatha Raghuram, Yongjun Wang, Thomas P. Burris, and Fraydoon Rastinejad. Structure of the intact ppar-g-rxr-a nuclear receptor complex on dna. Nature, 456:350 EP –, Oct 2008. Article.
  9. Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas Blaschke. The rise of deep learning in drug discovery. Drug Discovery Today, 2018.
  10. Zhi Chen, Hong-lin Li, Qi-jun Zhang, Xiao-guang Bao, Kun-qian Yu, Xiao-min Luo, Wei-liang Zhu, and Hua-liang Jiang. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Acta Pharmacol Sin, 30(12):1694–1708, Dec 2009. 19935678[pmid].
  11. Plamen Dragiev, Robert Nadon, and Vladimir Makarenkov. Systematic error detection in experimental high-throughput screening. BMC Bioinformatics, 12(1):25, 2011.
  12. Wayne C. Drevets, Joseph L. Price, Joseph R. Simpson Jr, Richard D. Todd, Theodore Reich, Michael Vannier, and Marcus E. Raichle. Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386:824 EP –, Apr 1997.
  13. Wayne C. Drevets, Jonathan Savitz, and Michael Trimble. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr, 13(8):663-681, Aug 2008. 18704022[pmid].
  14. Nadine H. Elowe, Jan E. Blanchard, Jonathan D. Cechetto, and Eric D. Brown. Experimental screening of dihydrofolate reductase yields a “test set” of 50,000 small molecules for a computational data-mining and docking competition. Journal of Biomolecular Screening, 10(7):653–657, 2005. PMID: 16170050.
  15. Andreas Evers and Gerhard Klebe. Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model. Journal of Medicinal Chemistry, 47(22):5381–5392, 2004. PMID: 15481976.
  16. D. A. Filimonov, A. A. Lagunin, T. A. Gloriozova, A. V. Rudik, D. S. Druzhilovskii, P. V. Pogodin, and V. V. Poroikov. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chemistry of Heterocyclic Compounds, 50(3):444–457, Jun 2014.
  17. Richard A. Friesner, Jay L. Banks, Robert B. Murphy, Thomas A. Halgren, Jasna J. Klicic, Daniel T. Mainz, Matthew P. Repasky, Eric H. Knoll, Mee Shelley, Jason K. Perry, David E. Shaw, Perry Francis, and Peter S. Shenkin. Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7):1739–1749, 2004. PMID: 15027865.
  18. Pascale Gaillard, Isabelle Jeanclaude-Etter, Vittoria Ardissone, Steve Arkinstall, Yves Cambet, Montserrat Camps, Christian Chabert, Dennis Church, Rocco Cirillo, Denise Gretener, Serge Halazy, Anthony Nichols, Cedric Szyndralewiez, Pierre-Alain Vitte, and Jean-Pierre Gotteland. Design and synthesis of the first generation of novel potent, selective, and in vivo active (benzothiazol-2-yl)acetonitrile inhibitors of the c-jun n-terminal kinase. Journal of Medicinal Chemistry, 48(14):4596–4607, 200
  19. Andrew C. Good, Stanley R. Krystek, and Jonathan S. Mason. High-throughput and virtual screening: core lead discovery technologies move towards integration. Drug Discovery Today, 5:S61 – S69, 2000.
  20. Sabrina Heng, Kimberly R Gryncel, and Evan R Kantrowitz. A library of novel allosteric inhibitors against fructose 1,6-bisphosphatase. Bioorganic & medicinal chemistry, 17(11):3916—3922, June 2009.
  21. Shu-Gui Huang. Development of a high throughput screening assay for mitochondrial membrane potential in living cells. Journal of Biomolecular Screening, 7(4):383–389, 2002. PMID: 12230893.
  22. Ajay N. Jain. Surflex-dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. Journal of Computer-Aided Molecular Design, 21(5):281–306, May 2007.
  23. Gareth Jones, Peter Willett, Robert C Glen, Andrew R Leach, and Robin Taylor. Development and validation of a genetic algorithm for flexible docking11edited by f. e. cohen. Journal of Molecular Biology, 267(3):727 – 748, 1997.
  24. T. Kaserer, V. Obermoser, A. Weninger, R. Gust, and D. Schuster. Evaluation of selected 3d virtual screening tools for the prospective identification of peroxisome proliferator-activated receptor (ppar)g partial agonists. European Journal of Medicinal Chemistry, 124:49 – 62, 2016.
  25. Teresa Kaserer, Veronika Temml, Zsofia Kutil, Tomas Vanek, Premysl Landa, and Daniela Schuster. Prospective performance evaluation of selected common virtual screening tools. case study: Cyclooxygenase (cox) 1 and 2. European Journal of Medicinal Chemistry, 96:445 – 457, 2015.
  26. Michael J. Keiser, Bryan L. Roth, Blaine N. Armbruster, Paul Ernsberger, John J. Irwin, and Brian K. Shoichet. Relating protein pharmacology by ligand chemistry. Nature Biotechnology, 25:197 EP –, Feb 2007.
  27. Henk Kramer,Wendy J. Post, Jan Pruim, and Harry J.M. Groen. The prognostic value of positron emission tomography in non-small cell lung cancer: Analysis of 266 cases. Lung Cancer, 52(2):213 – 217, 2006.
  28. Christopher A. Lepre, Jonathan M. Moore, and Jeffrey W. Peng. Theory and applications of nmr-based screening in pharmaceutical research. Chemical Reviews, 104(8):3641–3676, 2004. PMID: 15303832.
  29. Prisca Liberali, Berend Snijder, and Lucas Pelkmans. Single-cell and multivariate approaches in genetic perturbation screens. Nature Reviews Genetics, 16:18 EP –, Dec 2014. Review Article.
  30. Evanthia Lionta, George Spyrou, Demetrios K. Vassilatis, and Zoe Cournia. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr Top Med Chem, 14(16):1923–1938, Aug 2014. CTMC-14-1923[PII].
  31. Xiaofeng Liu, Sisheng Ouyang, Biao Yu, Yabo Liu, Kai Huang, Jiayu Gong, Siyuan Zheng, Zhihua Li, Honglin Li, and Hualiang Jiang. Pharmmapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res, 38(Web Server issue):W609–W614, Jul 2010. gkq300[PII].
  32. Ying Liu, Battsetseg Batchuluun, Louisa Ho, Dan Zhu, Kacey J. Prentice, Alpana Bhattacharjee, Ming Zhang, Farzaneh Pourasgari, Alexandre B. Hardy, Kathryn M. Taylor, Herbert Gaisano, Feihan F. Dai, and Michael B. Wheeler. Characterization of zinc influx transporters (zips) in pancreatic b cells: Roles in regulating cytosolic zinc homeostasis and insulin secretion. J Biol Chem, 290(30):18757–18769, Jul 2015. M115.640524[PII].
  33. Paul D. Lyne, Peter W. Kenny, David A. Cosgrove, Chun Deng, Sonya Zabludoff, John J. Wendoloski, and Susan Ashwell. Identification of compounds with nanomolar binding affinity for checkpoint kinase-1 using knowledge-based virtual screening. Journal of Medicinal Chemistry, 47(8):1962–1968, 2004. PMID: 15055996.
  34. Bhaskar S. Mandavilli, Robert J. Aggeler, and Kevin M. Chambers. Tools to Measure Cell Health and Cytotoxicity Using High Content Imaging and Analysis, pages 33–46. Springer New York, New York, NY, 2018.
  35. Campbell McInnes. Virtual screening strategies in drug discovery. Current Opinion in Chemical Biology, 11(5):494 – 502, 2007. Analytical Techniques / Mechanisms.
  36. Stefania Moscato, Francesca Ronca, Daniela Campani, and Serena Danti. Poly(vinyl alcohol)/gelatin hydrogels cultured with hepg2 cells as a 3d model of hepatocellular carcinoma: A morphological study. Journal of Functional Biomaterials, 6(1):16–32, 2015.
  37. Mendez Lucio Oscar, Tran Jeremy, Medina Franco Jose L., Meurice Nathalie, and Muller Mark. Toward drug repurposing in epigenetics: Olsalazine as a hypomethylating compound active in a cellular context. ChemMedChem, 9(3):560–565.
  38. Seth W. Perry, John P. Norman, Justin Barbieri, Edward B. Brown, and Harris A. Gelbard. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques, 50(2):98–115, Feb 2011. 21486251[pmid].
  39. Obdulia Rabal, Wolfgang Link, Beatriz G. Serelde, James R. Bischoff, and Julen Oyarzabal. An integrated one-step system to extract, analyze and annotate all relevant information from image-based cell screening of chemical libraries. Mol. BioSyst., 6:711–720, 2010.
  40. H. Remmer. The role of the liver in drug metabolism. The American journal of Medicine, 49(5):617–629, 2018/04/08 1970.
  41. Markus Rudin and Ralph Weissleder. Molecular imaging in drug discovery and development. Nature Reviews Drug Discovery, 2:123 EP –, Feb 2003. Review Article.
  42. Georg Sager, Elin O. Orvoll, Roy A. Lysaa, Irina Kufareva, Ruben Abagyan, and Aina W. Ravna. Novel cgmp efflux inhibitors identified by virtual ligand screening (vls) and confirmed by experimental studies. Journal of Medicinal Chemistry, 55(7):3049–3057, 2012. PMID: 22380603.
  43. Kirk S. Schroeder and Brad D. Neagle. Flipr: A new instrument for accurate, high throughput optical screening. Journal of Biomolecular Screening, 1(2):75–80, 1996.
  44. Bruce G. Szczepankiewicz, Gang Liu, Philip J. Hajduk, Cele Abad-Zapatero, Zhonghua Pei, Zhili Xin, Thomas H. Lubben, James M. Trevillyan, Michael A. Stashko, Stephen J. Ballaron, Heng Liang, Flora Huang, Charles W. Hutchins, Stephen W. Fesik, and Michael R. Jirousek. Discovery of a potent, selective protein tyrosine phosphatase 1b inhibitor using a linked-fragment strategy. Journal of the American Chemical Society, 125(14):4087–4096, 2003. PMID: 12670229.
  45. Stefan Tasler, Oliver Mš uller, Tanja Wieber, Thomas Herz, Stefano Pegoraro, Wael Saeb, Martin Lang, Rolf Krauss, Frank Totzke, Ute Zirrgiebel, Jan E. Ehlert, Michael H.G. Kubbutat, and Christoph Schšachtele. Substituted 2-arylbenzothiazoles as kinase inhibitors: Hit-to-lead optimization. Bioorganic & Medicinal Chemistry, 17(18):6728 - 6737, 2009.
  46. William Thomsen, John Frazer, and David Unett. Functional assays for screening gpcr targets. Current Opinion in Biotechnology, 16(6):655 - 665, 2005. Chemical biotechnology/Pharmaceutical biotechnology.
  47. Nicolas Triballeau, Francine Acher, Isabelle Brabet, Jean-Philippe Pin, and Hugues-Olivier Bertrand. Virtual screening workflow development guided by the receiver operating characteristic curve approach. application to high-throughput docking on metabotropic glutamate receptor subtype 4. Journal of Medicinal Chemistry, 48(7):2534-2547, 2005. PMID: 15801843.
  48. Gregory L. Warren, C. Webster Andrews, Anna-Maria Capelli, Brian Clarke, Judith LaLonde, Millard H. Lambert, Mika Lindvall, Neysa Nevins, Simon F. Semus, Stefan Senger, Giovanna Tedesco, Ian D. Wall, James M.Woolven, Catherine E. Peishoff, and Martha S. Head. A critical assessment of docking programs and scoring functions. Journal of Medicinal Chemistry, 49(20):5912-5931, 2006. PMID: 17004707.
  49. Alisa Wilantho, Sissades Tongsima, and Ekachai Jenwitheesuk. Pre-docking filter for protein and ligand 3d structures. Bioinformation, 3(5):189-193, Dec 2008. 004100032008[PII].
  50. J š urgen K. Willmann, Nicholas van Bruggen, Ludger M. Dinkelborg, and Sanjiv S. Gambhir. Molecular imaging in drug development. Nature Reviews Drug Discovery, 7:591 EP , Jul 2008. Review Article.
  51. Fabian Zanella, James B. Lorens, and Wolfgang Link. High content screening: seeing is believing. Trends in Biotechnology, 28(5):237-245, 2018/04/08 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Bio-imaging drug discovery high-content screening virtual screening