CFP last date
20 January 2025
Reseach Article

Comparative Analysis of Genetic k-means and Fuzzy k-modes Approach for Clustering Tweets

by Akash Shrivastava, M. L. Garg
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 181 - Number 6
Year of Publication: 2018
Authors: Akash Shrivastava, M. L. Garg
10.5120/ijca2018917461

Akash Shrivastava, M. L. Garg . Comparative Analysis of Genetic k-means and Fuzzy k-modes Approach for Clustering Tweets. International Journal of Computer Applications. 181, 6 ( Jul 2018), 11-14. DOI=10.5120/ijca2018917461

@article{ 10.5120/ijca2018917461,
author = { Akash Shrivastava, M. L. Garg },
title = { Comparative Analysis of Genetic k-means and Fuzzy k-modes Approach for Clustering Tweets },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2018 },
volume = { 181 },
number = { 6 },
month = { Jul },
year = { 2018 },
issn = { 0975-8887 },
pages = { 11-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume181/number6/29719-2018917461/ },
doi = { 10.5120/ijca2018917461 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:05:11.548976+05:30
%A Akash Shrivastava
%A M. L. Garg
%T Comparative Analysis of Genetic k-means and Fuzzy k-modes Approach for Clustering Tweets
%J International Journal of Computer Applications
%@ 0975-8887
%V 181
%N 6
%P 11-14
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Social media plays a key role in decision making process. The challenge with the social media data is that it is highly categorical in nature. The classification of dataset into some prescribed format is really a tedious task. In this paper, the existing two clustering approaches is being experimented on the twitter datasets i.e. tweets to justify the fact that clustering is really an approach essentially utilized to classify the categorical dataset. Genetic k-means and fuzzy k-modes algorithm is tested on the tweets. Results shown that genetic k-means performs better for tweets classification.

References
  1. G. Gan, Z. Yang, and J. Wu (2005), A Genetic k-Modes Algorithm for Clustering for Categorical Data, ADMA , LNAI 3584, pp. 195–202.
  2. G. Gan, J. Wu, Z. Yang A genetic fuzzy k-Modes algorithm for clustering categorical data * Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada M3J 1P3.
  3. A. Ahmad and L. Dey, (2007), A k-mean clustering algorithm for mixed numeric and categorical data’, Data and Knowledge Engineering Elsevier Publication, vol. 63, pp 503-527.
  4. J. Z. Haung, M. K. Ng, H. Rong, Z. Li (2005) Automated variable weighting in k-mean type clustering, IEEE Transaction on PAMI 27(5).
  5. K. Krishna and M. Murty (1999), ‘Genetic K-Means Algorithm’, IEEE Transactions on Systems, Man, and Cybernetics vol. 29, NO. 3, pp. 433-439.
  6. Jain, M. Murty and P. Flynn (1999), ‘Data clustering: A review’, ACM Computing Survey., vol.31, no. 3, pp. 264–323.
  7. Hui Ding. Goce Trajcevski Peter Scheuermann xiaoyue Wang. Eamonn Keogh. Proceedings of the VLDB endowment VLDB endowment, Querying and mining of time series data: vol.1, issue 2, august 2008.
  8. A.Ahmad and L.Dey,(2007),A K-means clustering algorithm for mixed and categorical data,Data and Knowledge Engineering Elsevier Publication,vol.63,pp.503-527.
  9. Dharmendra K Roy and Lokesh K Sharma,Genetic K-means Clustering Algorithm For Mixed and Categorical data,Department of Information Technology and MCA,Rungta college Of Engineering and technology,Bhilai(CG)-India,International journal of Artifical Intelligence & Applications(IJAIA) vol 1,no 2,april 2010.
  10. E. R. Ruspini, “A new approach to clustering,” Inform. Contr., vol. 19, pp. 22–32, 1969.
  11. S.Guha,R.Rastogi and K.Shim (2000). Rock: A robust clustering algorithm for categorical attributes, Information System,vol 25 no 5,pp345-366.
  12. Bezdek, J. (1974). Fuzzy mathematics in pattern classification, Ph.D. thesis, Ithaca, NY: Cornell University (April).
  13. Huang, Z., & Ng, M. (1999). A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems, 7(4), 446–452.
  14. Ng, M., & Wong, J. (2002). Clustering categorical data sets using tabu search techniques. Pattern Recognition, 35(12), 2783–2790.
  15. Davis, L. (1991). Handbook of genetic algorithms. New York, USA: van Nostrand Reinhold.
  16. Glover, F., & Laguna, M. (1997). Tabu search.Boston: Kluwer Academic Publishers.
  17. Krishna, K., & Narasimha, M. (1999). Genetic k-means algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part B, 29(3), 433–439.
  18. Dunn, J. (1974). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57.
Index Terms

Computer Science
Information Sciences

Keywords

Genetic k-means Fuzzy k-modes