CFP last date
20 January 2025
Reseach Article

A Hybrid Genetic Fuzzy k-modes and Artificial Bee Colony Approach for Clustering YouTube Data

by Akash Shrivastava, M. L. Garg
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 181 - Number 6
Year of Publication: 2018
Authors: Akash Shrivastava, M. L. Garg
10.5120/ijca2018917446

Akash Shrivastava, M. L. Garg . A Hybrid Genetic Fuzzy k-modes and Artificial Bee Colony Approach for Clustering YouTube Data. International Journal of Computer Applications. 181, 6 ( Jul 2018), 6-10. DOI=10.5120/ijca2018917446

@article{ 10.5120/ijca2018917446,
author = { Akash Shrivastava, M. L. Garg },
title = { A Hybrid Genetic Fuzzy k-modes and Artificial Bee Colony Approach for Clustering YouTube Data },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2018 },
volume = { 181 },
number = { 6 },
month = { Jul },
year = { 2018 },
issn = { 0975-8887 },
pages = { 6-10 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume181/number6/29718-2018917446/ },
doi = { 10.5120/ijca2018917446 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:05:10.602761+05:30
%A Akash Shrivastava
%A M. L. Garg
%T A Hybrid Genetic Fuzzy k-modes and Artificial Bee Colony Approach for Clustering YouTube Data
%J International Journal of Computer Applications
%@ 0975-8887
%V 181
%N 6
%P 6-10
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The genetic fuzzy k-modes algorithm introduced by G.gan, J. Wu and z. Yang. The algorithm is proven to be very effective for cluster structures retrieved from categorical datasets. However, the algorithm is prone to fall into global optima when it is required to be implementing on streaming datasets like social media data. In order to search for suitable approach to overcome the global optimal challenge the hybrid approach of genetic fuzzy k-modes and artificial bee colony is being proposed. Experiments on YouTube datasets are carried out to illustrate the performance of proposed algorithm.

References
  1. M. Anderberg, Cluster Analysis for Applications. New York: Academic, 1973.
  2. Jain A., & Dubes, R. (1988). Algorithms for clustering data. Englewood Cliffs, New Jersey: Prentice Hall.
  3. C. Bishop, Neural Networks for Pattern Recognition. New York: Oxford Univ. Press, 1995
  4. V. Cherkassky and F. Mulier, Learning From Data: Concepts, Theory, and Methods. New York: Wiley, 1998.
  5. R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed. New York: Wiley, 2001.
  6. B. Everitt, S. Landau, and M. Leese, Cluster Analysis. London: Arnold, 2001.
  7. A. Jain, M. Murty, and P. Flynn, “Data clustering: A review,” ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, 1999.
  8. Dunn, J. (1974). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57.
  9. Ruspini, E. (1969). A new approach to clustering. Information and Control, 15, 22–32.
  10. Huang, Z., & Ng, M. (1999). A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems, 7(4), 446–452.
  11. Davis, L. (1991). Handbook of genetic algorithms. New York, USA: van Nostrand Reinhold.
  12. Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic Publishers.
  13. Krishna, K., & Narasimha, M. (1999). Genetic k-means algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part B, 29(3), 433–439.
  14. Zhao, L., Tsujimura, Y., & Gen, M. (1996). Genetic algorithm for fuzzy clustering. In Proceedings of IEEE International Conference on Evolutionary Computation, 1996 (pp. 716–719). Nagoya Japan: IEEE.
  15. Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing. 2008; 8: 687–697.
  16. Yang Y. An evaluation of statistical approaches to text categorization. Journal of Information Retrieval. 1999; 1: 67–88.
  17. Karaboga D, Ozturk C. A novel clustering approach: artificial bee colony (ABC) algorithm. Applied Soft Computing. 2011; 11: 652–657.
Index Terms

Computer Science
Information Sciences

Keywords

Clustering genetic algorithms Categorical data YouTube artificial bee colony