CFP last date
20 January 2025
Reseach Article

Building an Arabic Semantic Lexicon for Hajj

by Omar Batarfi, Mohamed Yehia Dahab, Ahmed Ezz
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 181 - Number 39
Year of Publication: 2019
Authors: Omar Batarfi, Mohamed Yehia Dahab, Ahmed Ezz
10.5120/ijca2019918325

Omar Batarfi, Mohamed Yehia Dahab, Ahmed Ezz . Building an Arabic Semantic Lexicon for Hajj. International Journal of Computer Applications. 181, 39 ( Jan 2019), 9-15. DOI=10.5120/ijca2019918325

@article{ 10.5120/ijca2019918325,
author = { Omar Batarfi, Mohamed Yehia Dahab, Ahmed Ezz },
title = { Building an Arabic Semantic Lexicon for Hajj },
journal = { International Journal of Computer Applications },
issue_date = { Jan 2019 },
volume = { 181 },
number = { 39 },
month = { Jan },
year = { 2019 },
issn = { 0975-8887 },
pages = { 9-15 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume181/number39/30320-2019918325/ },
doi = { 10.5120/ijca2019918325 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:08:34.911593+05:30
%A Omar Batarfi
%A Mohamed Yehia Dahab
%A Ahmed Ezz
%T Building an Arabic Semantic Lexicon for Hajj
%J International Journal of Computer Applications
%@ 0975-8887
%V 181
%N 39
%P 9-15
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Semantic lexicon is a lexicon augmented with information of lexical relationships among words. Although the semantic lexicon is the backbone of many intelligent applications, there is no serious effort has been done in developing an Arabic semantic lexicon. The main goal of this work is to build an automatic Arabic semantic lexicon. To achieve this goal, we select an Arabic dictionary and augment it with morphological information and semantic features such as Patterns, Meronymy, Holonymy and etc. The obtained results show that the objectives of this work are successfully accomplished, relations between different terms have been built and the glosses are automatically extracted for these terms.

References
  1. Singleton D.,“Language and the Lexicon”, Oxford University Press Inc., New York, 2000.
  2. Dirk Geeraerts, “Theories of Lexical Semantics”, Published in the United States by Oxford University Press Inc., New York, 2010.
  3. Nitin I., Fred J., “Handbook of Natural Language Processing”, Second edition, Chapman & Hall/CRC, ISBN: 978-1-4200-8593-8, 2010.
  4. Lyons, J., “Semantics” (2 vols.). Cambridge: Cambridge University Press, 1977.
  5. Allan, K., “Linguistic meaning” (2 vols.). London: Routledge, 1986.
  6. Lin, D. “Automatic retrieval and clustering of similar words”, In Proceedings of COLING/ACL-98. pp. 768-774. Montreal, Canada, 1998.
  7. Riloff, E. and Shepherd, J., “A corpus-based approach for building semantic lexicons”, In Proceedings of EMNLP-1997, 1997.
  8. Shinzato, K. and Torisawa, K., “Acquiring hyponymy relations from web documents”, In Proceedings of HLT-NAACL-2004. pp. 73-80. Boston, MA.,2004.
  9. Pantel, P. and Lin, D., “Discovering Word Senses from Text”, In Proceedings of SIGKDD-02. pp. 613-619. Edmonton, Canada, 2002.
  10. Girju, R.; Badulescu, A.; and Moldovan, D., “Learning semantic constraints for the automatic discovery of part-whole relations”, In Proceedings of HLT/NAACL-03. pp. 80-87. Edmonton, Canada, 2003.
  11. Chklovski, T., and Pantel, P., “VERBOCEAN: Mining the Web for Fine-Grained Semantic Verb Relations”, In Proceedings of EMNLP-2004. pp. 33-40. Barcelona, Spain, 2004.
  12. Lynne Murphy, “Semantic Relations and the Lexicon, Antonymy, Synonymy, and Other Paradigms”, Cambridge University Press, ISBN -13: 978-0-511-06899-7, 2003.
  13. Evens M., “Relational models of the lexicon”, Cambridge University Press, Cambridge, England, 1988.
  14. Fellbaum C., “A semantic network of English: The mother of all WordNets” In EuroWordNet: A Multilingual Database with Lexical Semantic Networks, P. Vossen (ed.), pp. 209–220. Dordrecht, the Netherlands: Kluwer. 1998.
  15. Vossen, P., “Condensed meaning in EuroWordNet.” In The Language of Word Meaning, P. Bouillon and F. Busa (eds.), pp. 363–383. Cambridge, U.K.: Cambridge University Press, 2001.
  16. Vossen, P. (ed.).”EuroWordNet: A Multilingual Database With Lexical Semantic Networks.” Dordrecht, the Netherlands: Kluwer. [Reprinted from Computers and the Humanities 32(2/3)], 1998.
  17. Cruse, D. Alan, “Lexical Semantic”, Cambridge: Cambridge University Press, Published by the Press Syndicate of the University of Cambridge, 1986.
  18. Nickles, M., A. Pease, A. C. Schalley, and D. Zaefferer,.”Ontologies across disciplines.” In Ontolinguistics: How Ontological Status Shapes the Linguistic Coding of Concepts, A. C. Schalley and D. Zaefferer (eds.), pp. 23–67. Berlin, Germany: Mouton de Gruyter, 2007.
  19. Green, Rebecca; Bean, Carol A.; and Myaeng, Sung Hyon (eds.), "The Semantics of Relationships: An interdisciplinary perspective", Kluwer Academic Publishers, Dordrecht. 2002.
  20. S Elkateb and W Black and P Vossen and D Farwell and et al., “Arabic WordNet and the Challenges of Arabic”, proceedings of Arabic NLP/MT Conference, London, 2006.
  21. Elkateb, S., Farreres, J., Fellbaum, C., Pease, A., and Black, W., “Arabic WordNet: A Linguistic Resource with a Deep Formal Semantic Foundation”, in Proceedings of the 6th International conference on Language Engineeing, Cairo. 2006.
  22. Anne R. Diekema, Center for Natural Language Processing, Syracuse, NY. Proceeding Semitic '04 Proceedings of the Workshop on Computational Approaches to Arabic Script-based Languages Association for Computational Linguistics Stroudsburg, PA, USA ©2004
  23. M.E. Ruiz, et al. 2001. CINDOR TREC-9 English-Chinese Evaluation. In “Proceedings of the 9th Text REtrieval Conference (TREC-9)”, E.M. Voorhees and D.K. Harman ed., pages 379-388, NIST, Gaithersburg, MD.
  24. Miller. 1990. WordNet: An On-line Lexical Database. International Journal of Lexicography, 3(4), Special Issue.
  25. Benjamin Van Durme, Ting Qian, and Lenhart Schubert. 2008. Class-driven Attribute Extraction. In COLING.
  26. Frank Rosenblatt. 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386–408.
  27. Lenhart K. Schubert. 2002. Can we derive general world knowledge from text? In HLT.
  28. Christiane Fellbaum, editor. 1998. WordNet: An Electronic Lexical Database. MIT Press.
  29. Al Dakkak, O., and Zein, A., “Towards Arabic Electronic Dictionary”, 3rd International Conference on Information and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008.
  30. S. Attar, M. Bawab, and O. Al Dakkak, "Arabic Lexical Database", Workshop on Arabic Natural Language Processing, ICTIS 2007, April 2007.
  31. Ben Halima M., and Alimi M., “An interactive system for Extracting Arabic Lexicon from Arabic Newspaper text”, Fifth International Conference on Innovations in Information Technology, 2008.
  32. Al-Shalabi R., and Kanaan G., “Constructing An Automatic Lexicon for Arabic Language”, International Journal of Computing and Information Sciences, Volume 2, Number 2, August 2004.
  33. Al-Yahya, M.; Alkhalifa, H.; Bahanshal, A.; Alodah, I.; Al-Helwah, N.; “An Ontological Model for Representing Computational Lexicons, A Componential Based Approach”, International Conference on Natural Language Processing and Knowledge Engineering (NLP-KE), 2010.
  34. Siddiqui, Muazzam Ahmed, Mohamed Yehia Dahab, and Omar Abdullah Batarfi. "Building a sentiment analysis corpus with multifaceted hierarchical annotation." International Journal of Computational Linguistics 6.2: 11-25, 2015.
  35. Aqel, Afnan, Sahar Alwadei, and Mohammad Dahab. "Building an Arabic Words Generator." International Journal of Computer Applications 112.14,2015.
  36. Mahyoub, Fawaz HH, Muazzam A. Siddiqui, and Mohamed Y. Dahab. "Building an Arabic sentiment lexicon using semi-supervised learning." Journal of King Saud University-Computer and Information Sciences 26.4: 417-424, 2014.
Index Terms

Computer Science
Information Sciences

Keywords

Semantic Lexicon Information Extraction Morphology Semantic Patterns Lexical Relationships.